Pebble Relation Comonad and Pathwidth

Nihil Shah²

Resources and Co-resources Workshop

²In discussion with S. Abramsky, D. Marsden, T. Paine, and L. Reggio → ← ■ → → ◆ ◆ ◆

Pebbling Comonad and Treewidth

Theorem ([ADW17])

The following are equivalent:

 ${\cal A}$ has a tree-decomposition of width < k

 \mathcal{A} has k-pebble forest cover

There exists a coalgebra $\alpha: \mathcal{A} \to \mathbb{P}_k \mathcal{A}$

Corollary ([ADW17])

 $twd(\mathcal{A})=k-1$ if and only if k is least index for which there exists a coalgebra $\alpha:\mathcal{A}\to\mathbb{P}_k\mathcal{A}$

(Tree/Path)-Decomposition

Definition

A tree decomposition of A of width k is a triple $(T, \leq_T, \lambda : T \to PA)$

For $a \in A$, there is an $x \in T$ where $a \in \lambda(x)$

If $a \in \lambda(x) \cap \lambda(x')$, then $a \in \lambda(y)$ for every y in path(x, x')

If $a \frown a' \in \mathcal{A}$, then $\{a, a'\} \subseteq \lambda(x)$ from some $x \in T$

$$k = \max\{|\lambda(x)|\}_{x \in T} - 1$$

If \leq_T is well-ordered, then (T, \leq_T, λ) is a path decomposition of \mathcal{A} of width k.

k-Pebble (Linear) Forest Cover

Definition

A k-pebble forest cover of \mathcal{A} is a tuple $(\{(T_i, \leq_i)\}, p : A \to [k])$ where $\{(T_i, \leq_i)\}$ is a family of disjoint trees.

If $a \frown a' \in \mathcal{A}$, then there is a T_i such that $a, a' \in T_i$ If $a \frown a' \in \mathcal{A}$ and $a \le a'$ then for all $b \in (a, a] \in p(b) \neq p(a)$

If $a \frown a' \in \mathcal{A}$ and $a \leq_i a'$, then for all $b \in (a, a]_{\leq_i}$, $p(b) \neq p(a)$

If every \leq_i is a well-order, then $(\{(T_i, \leq_i)\}, p)$ is a k-pebble linear forest cover of A.

Pebble Relation Comonad

Given a σ -structure \mathcal{A} with universe A, define the set

$$\mathbb{PR}_k A := \{([(p_1, a_1), \dots, (p_n, a_n)], i) \mid (p_j, a_j) \in \mathsf{k} \times A \text{ and } i \in \mathsf{n}\}$$

Let $\epsilon_A(s,i)$ be the i-th element of s and $\pi_A(s,i)$ be the i-th pebble of s. For i < j, let s(i,j] denote the subsequence of s starting at i+1 and ending at j. Otherwise, s(i,j] is empty list. We can lift $\mathbb{PR}_k A$ to a σ -structure $\mathbb{PR}_k A$:

$$R^{\mathbb{PR}_k\mathcal{A}}((s,i_1),(s,i_2))\Leftrightarrow ext{let }i=\max(i_1,i_2),$$
 then $\pi_A(s,i_j)$ does not appear in $s(i_j,i]$ and $R^{\mathcal{A}}(\epsilon_A(s,i_1),\epsilon_A(s,i_2))$

 $(\mathbb{PR}_k, \epsilon, \delta)$ is a comonad over $\mathcal{R}(\sigma)$

Coalgebras over the Pebbling Comonad

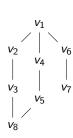


Figure: \mathcal{A}

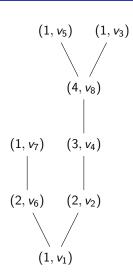


Figure: $\operatorname{im}(\alpha) \subset \mathbb{P}_4 \mathcal{A}$

Coalgebras over the Pebble Relation Comonad

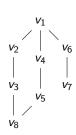


Figure: A

$$(2, v_8)$$

$$(6, v_7)$$

$$(5, v_5)$$

$$(1, v_3)$$

$$(4, v_6)$$

$$(3, v_4)$$

$$(2, v_2)$$

$$(1, v_1)$$

Figure: $\operatorname{im}(\alpha) \subset \mathbb{PR}_6 \mathcal{A}$

Pebble Relation Comonad and Pathwidth

Theorem

The following are equivalent:

 ${\cal A}$ has a path-decomposition of width < k

 ${\cal A}$ has k-pebble linear forest cover

There exists a coalgebra $\alpha: \mathcal{A} \to \mathbb{PR}_k \mathcal{A}$

Corollary

 $pwd(\mathcal{A})=k-1$ if and only if k is the least index for which there exists a coalgebra $\alpha:\mathcal{A}\to\mathbb{PR}_k\mathcal{A}$

Path Decomposition ⇒ Linear Forest Cover

Given a path decomposition (T, \leq_T, λ) for \mathcal{A} we can convert this to a linear forest cover:

For each $x \in T$, we can define an injective function from $\tau_x : \lambda(x) \to [k]$ such that $\tau_x|_{(\lambda(x) \cap \lambda(x))} = \tau_{x'}|_{(\lambda(x) \cap \lambda(x'))}$.

"Glue" the τ_x to obtain $p: A \to [k]$

A new S_i for each connected component of A

Let $x_a \in T$ least such that $a \in \lambda(x_a)$. $a \leq_i a'$ if $x_a <_T x_a'$ or $\tau_x(a) \leq \tau_x(a')$ if $x = x_a = x_{a'}$

Path Decomposition ← Linear Forest Cover

Given a k-pebble linear forest cover $(\{S_i, \leq_i)\}, p)$ for A we can convert this to a path decomposition:

Let (A, \leq_A) be our underlying path where \leq_A is the ordered sum of the (S_i, \leq_i)

Call a' an active predecessor of a if $a' \leq_i a$ and for all $b \in (a', a]$, $p(b) \neq p(a')$. Let $\lambda(a)$ be the set of active predecessor of a.

Linear Forest Cover $\Leftrightarrow \mathbb{PR}_k$ -Coalgebra

Given a k-pebble linear forest cover $(\{S_i, \leq_i)\}, p)$ for \mathcal{A} we can convert this to a $\alpha: \mathcal{A} \to \mathbb{PR}_k \mathcal{A}$

For S_i of the form

$$a_1 \leq_i \cdots \leq_i a_n$$

$$t_i = [(p(a_1), a_1), \dots, (p(a_n), a_n)].$$

 $\alpha(a_i) = (t_i, j)$

Definition ([Dal05])

Consider the fragment of $M^k \subseteq \exists^+ L^k$ where conjunctions are of the form $\bigwedge \Psi$ for Ψ satisfying the conditions:

Every formula in Ψ with more than k-1 variables is quantifier-free. At most one formula in Ψ containing quantifiers is not a sentence.

$$\phi_1(x,y) = E(x,y) \in M^3$$

$$\phi_{n+1}(x,y) = \exists z (E(x,z) \land \exists x (x = z \land \phi_n(x,y))) \in M^3$$

Theorem ([Dal05])

- (1) Duplicator has a winning strategy in the k-Pebble Relation game from ${\cal A}$ to ${\cal B}$
- (2) For every sentence $\phi \in M^k$, $\mathcal{A} \vDash \phi \Rightarrow \mathcal{B} \vDash \phi$
- (3) For every σ -structure P with pathwidth at most k-1, $P \to \mathcal{A} \Rightarrow P \to \mathcal{B}$ (denote " $\mathcal{A} \xrightarrow{pwd < k} \mathcal{B}$ ")

Pebble Relation Game

The Pebble-Relation game from \mathcal{A} to \mathcal{B} is played as follows:

Game begins with $I = \emptyset$ and $T = hom(\emptyset, \mathcal{B})$

For I' and T' of the previous move,

Spoiler shrinks the window $I \subseteq I'$,

Duplicator chooses restrictions of T' to I

Spoiler grows the window $I' \subseteq I$ (w/ $|I| \le k$)

Duplicator responds with a set of homomorphisms T which are extensions of functions of some $S' \subseteq T'$ to I

Spoiler wins if Duplicator can't successfully extend any of the homomorphisms

Duplicator has the advantage of non-determinism

Linking theorem

Theorem

Let $\mathbb C$ is a comonad. $f:\mathbb CA\to B$ if and only if for all coalgebras $\alpha:D\to\mathbb CD$.

$$D \rightarrow A \Rightarrow D \rightarrow B$$

Denote the condition on the RHS as $A \xrightarrow{\mathbb{C}} B$. Therefore, $\mathbb{C}A \to B \Leftrightarrow A \xrightarrow{\mathbb{C}} B$

Proof.

 \Rightarrow Suppose $h: D \rightarrow A$, then $f \circ \mathbb{C}h \circ \alpha: D \rightarrow B$

 \Leftarrow Choosing $\alpha = \delta_A : \mathbb{C}A \to \mathbb{C}\mathbb{C}A$ and the fact that $\epsilon_A : \mathbb{C}A \to A$ exists, then by the hypothesis $f : \mathbb{C}A \to B$

Corollary

There exists a morphism $f : \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$ iff for all $\phi \in M^k$ $\mathcal{A} \vDash \phi \Rightarrow \mathcal{B} \vDash \phi$

Proof.

$$f: \mathbb{PR}_k \mathcal{A} o \mathcal{B} \Leftrightarrow \mathcal{A} \xrightarrow{\mathbb{PR}_k} \mathcal{B}$$
 linking theorem
$$\Leftrightarrow \mathcal{A} \xrightarrow{pwd < k} \mathcal{B} \text{ characterization theorem}$$

$$\Leftrightarrow \forall \phi \in M^k, \mathcal{A} \vDash \phi \Rightarrow \mathcal{B} \vDash \phi \text{ Dalmau's theorem}$$

Where this is a going?

Back-and-forth equivalence? CoKleisli Isomorphisms to add counting quantifiers?

 \mathcal{B} has bounded treewidth duality, $\exists k \forall \mathcal{A}, \ \mathbb{P}_k \mathcal{A} \to \mathcal{B} \Leftrightarrow \mathcal{A} \to \mathcal{B}$

 \mathcal{B} has bounded treewidth duality \Rightarrow CSP(\mathcal{B}) \in PTIME Converse does not hold [FV98].

 ${\mathcal B}$ has bounded pathwidth duality, $\exists k orall {\mathcal A}, \; {\mathbb P} {\mathbb R}_k {\mathcal A} o {\mathcal B} \Leftrightarrow {\mathcal A} o {\mathcal B}$

 \mathcal{B} has bounded pathwidth duality $\Rightarrow \mathsf{CSP}(\mathcal{B}) \in \mathsf{NL}$ Converse is a open problem [Dal05].

 $\mathsf{CSP}(\mathcal{B}) \text{ definable in Krom SNP} \Rightarrow \mathsf{CSP}(\mathcal{B}) \in \mathsf{NL}$

 $\mathsf{CSP}(\mathcal{B}) \in \mathsf{NL} \Rightarrow \mathsf{CSP}(\mathcal{B}) \text{ definable in Krom SNP } +0 + \mathsf{succ}$

Comonad capturing symmetric pathwidth duality? (Possibly rotation list comonad)

The pebbling comonad in finite model theory.

In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, June 2017.

Victor Dalmau.

Linear Datalog and Bounded Path Duality of Relational Structures. Logical Methods in Computer Science, 1(1):5, April 2005. arXiv: cs/0504027.

Tomás Feder and Moshe Y. Vardi.

The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. *SIAM Journal on Computing*, 28(1):57–104, January 1998.