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Pebbling Comonad and Treewidth

Theorem ([ADW17])

The following are equivalent:

A has a tree-decomposition of width < k

A has k-pebble forest cover

There exists a coalgebra α : A → PkA

Corollary ([ADW17])

twd(A) = k − 1 if and only if k is least index for which there exists a
coalgebra α : A → PkA
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(Tree/Path)-Decomposition

Definition

A tree decomposition of A of width k is a triple (T ,≤T , λ : T → PA)

For a ∈ A, there is an x ∈ T where a ∈ λ(x)

If a ∈ λ(x) ∩ λ(x ′), then a ∈ λ(y) for every y in path(x , x ′)

If a_ a′ ∈ A, then {a, a′} ⊆ λ(x) from some x ∈ T

k = max{|λ(x)|}x∈T − 1

If ≤T is well-ordered, then (T ,≤T , λ) is a path decomposition of A of
width k .
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k-Pebble (Linear) Forest Cover

Definition

A k-pebble forest cover of A is a tuple ({(Ti ,≤i )}, p : A→ [k]) where
{(Ti ,≤i )} is a family of disjoint trees.

If a_ a′ ∈ A, then there is a Ti such that a, a′ ∈ Ti

If a_ a′ ∈ A and a ≤i a
′, then for all b ∈ (a, a]≤i , p(b) 6= p(a)

If every ≤i is a well-order, then ({(Ti ,≤i )}, p) is a k-pebble linear forest
cover of A.
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Pebble Relation Comonad

Given a σ-structure A with universe A, define the set

PRkA := {([(p1, a1), . . . , (pn, an)], i) | (pj , aj) ∈ k× A and i ∈ n}

Let εA(s, i) be the i-th element of s and πA(s, i) be the i-th pebble of s.
For i < j , let s(i , j ] denote the subsequence of s starting at i + 1 and
ending at j . Otherwise, s(i , j ] is empty list. We can lift PRkA to a
σ-structure PRkA:

RPRkA((s, i1), (s, i2))⇔ let i = max(i1, i2),

then πA(s, ij) does not appear in s(ij , i ]

and RA(εA(s, i1), εA(s, i2))

(PRk , ε, δ) is a comonad over R(σ)
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Coalgebras over the Pebbling Comonad
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Figure: im(α) ⊂ P4A
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Coalgebras over the Pebble Relation Comonad
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Pebble Relation Comonad and Pathwidth

Theorem

The following are equivalent:

A has a path-decomposition of width < k

A has k-pebble linear forest cover

There exists a coalgebra α : A → PRkA

Corollary

pwd(A) = k − 1 if and only if k is the least index for which there exists a
coalgebra α : A → PRkA
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Path Decomposition ⇒ Linear Forest Cover

Given a path decomposition (T ,≤T , λ) for A we can convert this to a
linear forest cover:

For each x ∈ T , we can define an injective function from
τx : λ(x)→ [k] such that τx |(λ(x)∩λ(x)) = τx′ |(λ(x)∩λ(x′)).

“Glue” the τx to obtain p : A→ [k]

A new Si for each connected component of A

Let xa ∈ T least such that a ∈ λ(xa). a ≤i a
′ if xa <T x ′a or

τx(a) ≤ τx(a′) if x = xa = xa′
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Path Decomposition ⇐ Linear Forest Cover

Given a k-pebble linear forest cover ({Si ,≤i )}, p) for A we can convert
this to a path decomposition:

Let (A,≤A) be our underlying path where ≤A is the ordered sum of
the (Si ,≤i )

Call a′ an active predecessor of a if a′ ≤i a and for all b ∈ (a′, a],
p(b) 6= p(a′). Let λ(a) be the set of active predecessor of a.
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Linear Forest Cover ⇔ PRk-Coalgebra

Given a k-pebble linear forest cover ({Si ,≤i )}, p) for A we can convert
this to a α : A → PRkA

For Si of the form
a1 ≤i · · · ≤i an

ti = [(p(a1), a1), . . . , (p(an), an)].

α(aj) = (ti , j)
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Definition ([Dal05])

Consider the fragment of Mk ⊆ ∃+Lk where conjunctions are of the form∧
Ψ for Ψ satisfying the conditions:

Every formula in Ψ with more than k − 1 variables is quantifier-free.

At most one formula in Ψ containing quantifiers is not a sentence.

φ1(x , y) = E (x , y) ∈ M3

φn+1(x , y) = ∃z(E (x , z) ∧ ∃x(x = z ∧ φn(x , y))) ∈ M3

Theorem ([Dal05])

(1) Duplicator has a winning strategy in the k-Pebble Relation game
from A to B

(2) For every sentence φ ∈ Mk , A � φ⇒ B � φ

(3) For every σ-structure P with pathwidth at most k − 1,

P→ A⇒ P→ B (denote “A pwd<k−−−−→ B”)
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Pebble Relation Game

The Pebble-Relation game from A to B is played as follows:

Game begins with I = ∅ and T = hom(∅,B)

For I ′ and T ′ of the previous move,

Spoiler shrinks the window I ⊆ I ′,

Duplicator chooses restrictions of T ′ to I

Spoiler grows the window I ′ ⊆ I (w/ |I | ≤ k)
Duplicator responds with a set of homomorphisms T which
are extensions of functions of some S ′ ⊆ T ′ to I

Spoiler wins if Duplicator can’t successfully extend any of the
homomorphisms

Duplicator has the advantage of non-determinism
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Linking theorem

Theorem

Let C is a comonad. f : CA→ B if and only if for all coalgebras
α : D → CD,

D → A⇒ D → B

Denote the condition on the RHS as A
C−→ B. Therefore,

CA→ B ⇔ A
C−→ B

Proof.

⇒ Suppose h : D → A, then f ◦ Ch ◦ α : D → B
⇐ Choosing α = δA : CA→ CCA and the fact that εA : CA→ A exists,
then by the hypothesis f : CA→ B
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Corollary

There exists a morphism f : PRkA → B iff for all φ ∈ Mk

A � φ⇒ B � φ

Proof.

f : PRkA → B ⇔ A
PRk−−→ B linking theorem

⇔ A pwd<k−−−−→ B characterization theorem

⇔ ∀φ ∈ Mk ,A � φ⇒ B � φ Dalmau’s theorem
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Where this is a going?

Back-and-forth equivalence? CoKleisli Isomorphisms to add counting
quantifiers?

B has bounded treewidth duality, ∃k∀A, PkA → B ⇔ A → B
B has bounded treewidth duality ⇒ CSP(B) ∈ PTIME
Converse does not hold [FV98].

B has bounded pathwidth duality, ∃k∀A, PRkA → B ⇔ A → B
B has bounded pathwidth duality ⇒ CSP(B) ∈ NL
Converse is a open problem [Dal05].
CSP(B) definable in Krom SNP ⇒ CSP(B) ∈ NL
CSP(B) ∈ NL⇒ CSP(B) definable in Krom SNP +0 + succ

Comonad capturing symmetric pathwidth duality? (Possibly rotation
list comonad)
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