Guards, Structure and Power

$\mathsf{Dan}\ \mathsf{Marsden}^1$

March 26, 2020

¹Joint work with Samson Abramsky, Tom Paine and Nihil Shah $\rightarrow 4$ $\equiv \rightarrow 2$

Outline

- Background on Games
- Introduction to the Structure and Power set up
- Detailed examination of modal logic related comonads

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Guarded logic and appropriate comonads

Model Comparison Games

- ▶ Pebbling games model equivalence with *k*-variable FOL.
- Ehrenfeuct-Fraïssé games model equivalence with quantifier depth k FOL.
- **Bisimulation games** "Behavioural equivalence" for *k*-steps

Basic Bisimilarity

Bisimulations and Bisimilarity

Given two non-deterministic transition systems, Left and Right, a *bisimulation between Left and Right* is a binary relation B such that if B(I, r):

- If $l \to l'$ then there exists r' such that $r \to r'$ and B(l', r').
- If $r \to r'$ then there exists l' such that $l \to l'$ and B(l', r').

If two states are related by a bisimulation, we say that they are *bisimilar*.

Basic Bisimilarity

Bisimulations and Bisimilarity

Given two non-deterministic transition systems, Left and Right, a *bisimulation between Left and Right* is a binary relation B such that if B(I, r):

- If $l \to l'$ then there exists r' such that $r \to r'$ and B(l', r').
- If $r \to r'$ then there exists l' such that $l \to l'$ and B(l', r').

If two states are related by a bisimulation, we say that they are *bisimilar*.

Interactive Perspective

We can phrase this as a 2-player game between:

- Spoiler choosing moves to show that two states are not bisimilar
- Duplicator choosing responses maintaining that the states are bisimilar

A Win for Duplicator

Example (A Play of the Bisimulation Game)

In the structures below, w and a are bisimilar.

A Win for Duplicator

Example (A Play of the Bisimulation Game)

In the structures below, w and a are bisimilar.

A Win for Duplicator

Example (A Play of the Bisimulation Game)

In the structures below, w and a are bisimilar.

A Win for Spoiler

Example (Another Play of the Bisimulation Game)

In the structures below, w and a are not bisimilar:

A Win for Spoiler

Example (Another Play of the Bisimulation Game)

In the structures below, w and a are not bisimilar:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A Win for Spoiler

Example (Another Play of the Bisimulation Game)

In the structures below, w and a are not bisimilar:

A Simulation Game

A Restricted Game

We now consider games where players are restricted to one side. Example (Spoiler on the left)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

simulates Left.

A Simulation Game

A Restricted Game

We now consider games where players are restricted to one side. Example (Spoiler on the right 1)

A Simulation Game

A Restricted Game

We now consider games where players are restricted to one side. Example (Spoiler on the right 2)

Relational Structures

Relational Structures

Basic definitions:

- A relational signature Σ is a set of relation symbols, each with an associated arity.
- A relational structure over Σ is a set A equipped with a relation R^σ ⊆ Aⁿ for each relation symbol σ ∈ Σ with arity n.
- A homomorphism of relational structures of type h : A → B is a function between the underlying sets such that:

$$R^{\sigma}(a_1,...,a_n) \Rightarrow R^{\sigma}(ha_1,...,ha_n)$$

Making Life Easier

Informal Question

If there is no homomorphism of type:

 $A \rightarrow B$

How can we make it easier to construct one?

Making Life Easier

Informal Question

If there is no homomorphism of type:

 $A \rightarrow B$

How can we make it easier to construct one?

Imprecise Answer

We make the codomain "bigger":

 $A \to B$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Making Life Harder

Dual Informal Question

If there is a homomorphism of type:

 $A \rightarrow B$

How can we make it *harder* to construct one?

Dual Imprecise Answer

 $A \rightarrow B$

Measuring How Hard Life Is?

Bigger on the right, life gets easier, as we have more *resources*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Bigger on the left, life gets harder, as we have more coresources.

Keisler-Shelah Isomorphism Theorem

An Analogous Result

Elementary Equivalence as Isomorphism

Given relational structures A and B we can find "bigger" structures such that we have an *isomorphism*:

$A\cong B$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

if and only if A and B are elementary equivalent.

Categorical Framework

The Plan

For a given notion of game, we wish to introduce a comonad D such that homomorphisms:

$D(A) \rightarrow B$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

correspond to winning strategies for duplicator in the *existential version* of the game.

Categorical Framework

The Plan

For a given notion of game, we wish to introduce a comonad D such that homomorphisms:

$D(A) \rightarrow B$

correspond to winning strategies for duplicator in the *existential version* of the game. In fact, these comonads will be graded, with the grading quantifying the amount of coresources that can be catered for.

$$D^k(A) \to B$$

Categorical Framework

Concretely for Bisimulation

We construct a comonad D^k such that homomorphisms:

$$D^k(A) \to B$$

correspond to a winning strategy for the k-round simulation game showing B can simulate A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recap: Whats a comonad?

Comonads

A comonad on a category ${\mathcal C}$ consists of:

- An endofunctor $D : C \to C$.
- A counit natural transformation $\epsilon : D \Rightarrow 1$.

• A comultiplication natural transformation $\delta: D \Rightarrow D \circ D$. Satisfying obvious coherence conditions. More succinctly, a comonad on C is a comonoid in the endofunctor monoidal category ([C, C], \circ , 1).

Example (Non-empty lists)

There is a comonad on the category of sets and functions with:

- ► D(X) is the set of of non-empty finite lists of elements from X.
- ϵ is the tail function, e.g. $\epsilon[x, y, z] = z$.
- ► δ is the prefix function, e.g. $\delta[x, y, z] = [[x], [x, y], [x, y, z]].$

We will be looking at bisimilarity between a particular pair of elements (a_0, b_0) , so we use pointed structures (A, a_0) .

► We would like elements of D(X) to encode spoilers moves so far, starting from a₀.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We will be looking at bisimilarity between a particular pair of elements (a_0, b_0) , so we use pointed structures (A, a_0) .

- ► We would like elements of D(X) to encode spoilers moves so far, starting from a₀.
- A natural choice would be sequences [a₀, a₁, ..., a_n] where there is a transition a_i → a_{i+1}. It will be convenient to write these:

$$[a_0 \rightarrow a_1 \rightarrow ... \rightarrow a_n]$$

We will be looking at bisimilarity between a particular pair of elements (a_0, b_0) , so we use pointed structures (A, a_0) .

- We would like elements of D(X) to encode spoilers moves so far, starting from a₀.
- A natural choice would be sequences [a₀, a₁, ..., a_n] where there is a transition a_i → a_{i+1}. It will be convenient to write these:

$$[a_0 \rightarrow a_1 \rightarrow ... \rightarrow a_n]$$

► To lift this to a transition system, we add transitions:

$$[a_0 \rightarrow ... \rightarrow a_n] \rightarrow [a_0 \rightarrow ... \rightarrow a_n \rightarrow a_{n+1}]$$

We will be looking at bisimilarity between a particular pair of elements (a_0, b_0) , so we use pointed structures (A, a_0) .

- ► We would like elements of D(X) to encode spoilers moves so far, starting from a₀.
- A natural choice would be sequences [a₀, a₁, ..., a_n] where there is a transition a_i → a_{i+1}. It will be convenient to write these:

$$[a_0 \rightarrow a_1 \rightarrow ... \rightarrow a_n]$$

► To lift this to a transition system, we add transitions:

$$[a_0 \rightarrow ... \rightarrow a_n] \rightarrow [a_0 \rightarrow ... \rightarrow a_n \rightarrow a_{n+1}]$$

Finally, we make $[a_0]$ the point of the new structure.

We will be looking at bisimilarity between a particular pair of elements (a_0, b_0) , so we use pointed structures (A, a_0) .

- ► We would like elements of D(X) to encode spoilers moves so far, starting from a₀.
- A natural choice would be sequences [a₀, a₁, ..., a_n] where there is a transition a_i → a_{i+1}. It will be convenient to write these:

$$[a_0 \rightarrow a_1 \rightarrow ... \rightarrow a_n]$$

► To lift this to a transition system, we add transitions:

$$[a_0 \rightarrow ... \rightarrow a_n] \rightarrow [a_0 \rightarrow ... \rightarrow a_n \rightarrow a_{n+1}]$$

- Finally, we make $[a_0]$ the point of the new structure.
- We restrict to sequences of length k to yield a comonad for k-step bisimilarity.

Grown-up Bisimulation

Our notion of bisimilarity was as simple as possible. Two natural extensions:

- Allow for multiple different transition relations α, β, \dots
- Allow unary predicates on states, P, Q, ...

Labelled Transition System Bisimilarity

Given two non-deterministic labelled transition systems, Left and Right, a *bisimulation between Left and Right* is a binary relation B such that if B(l, r):

- For all unary predicates P(I) if and only if P(r).
- If $I \xrightarrow{\alpha} I'$ then there exists r' such that $r \xrightarrow{\alpha} r'$ and B(I', r').
- If $r \xrightarrow{\alpha} r'$ then there exists l' such that $l \xrightarrow{\alpha} l'$ and B(l', r'). If two states are related by a bisimulation, we say that they are *bisimilar*.

A Grown-Up Bisimulation Comonad

We adjust our baby comonad as follows:

• We now define D(X) to be sequences of the form:

$$[a_0 \xrightarrow{\alpha} a_1 ... a_{n-1} \xrightarrow{\gamma} a_n]$$

We generate the transition relations on our new structure as follows:

$$[a_0...a_n] \xrightarrow{\alpha} [a_0...a_n \xrightarrow{\alpha} a_{n+1}]$$

Predicates are defined on the new structure by:

$$P([a_0...a_n]) \Leftrightarrow P(a_n)$$

Modal Logic

Syntax

$$\varphi = \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \diamond_{\alpha} \varphi \mid \bot$$

Intuitive Reading

- p proposition P holds in the current state.
- ◇_αp we can make an α transition to a state in which proposition P holds.

► Logical connectives have their usual reading, for example $\varphi \land \psi$ - φ and ψ hold in the current state.

Semantics

Translation

Given a modal formula, we can construct a unary formula $\llbracket \varphi \rrbracket(x)$ in FOL as follow:

$$\begin{split} \llbracket \diamond_{\alpha} \varphi \rrbracket(x) &:= \exists y. R_{\alpha}(x, y) \land \llbracket \varphi \rrbracket(y) \\ \llbracket p \rrbracket(x) &:= P(x) \\ \llbracket \neg \varphi \rrbracket(x) &:= \neg \llbracket \varphi \rrbracket(x) \\ \llbracket \varphi \land \psi \rrbracket(x) &:= \llbracket \varphi \rrbracket(x) \land \llbracket \psi \rrbracket(x) \\ \llbracket \bot \rrbracket(x) &:= x \neq x \end{split}$$

Call formulae equivalent to those in the image of this translation the *modal fragment of FOL*.

Tying a Knot

ML and Bisimulation

Modal logic is the bisimulation invariant fragment of FOL:

 $FO/\sim \equiv ML$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tying a Knot

ML and Bisimulation

Modal logic is the bisimulation invariant fragment of FOL:

$$FO/\sim \equiv ML$$

But why do we care?

- Modal logic is a bit weak we cannot make natural sounding statements about transition systems in ML.
- Modal logic is has good computational and model theoretic properties - decidable, finite model property, tree model property.

Tying a Knot

ML and Bisimulation

Modal logic is the bisimulation invariant fragment of FOL:

$$FO/\sim \equiv ML$$

But why do we care?

- Modal logic is a bit weak we cannot make natural sounding statements about transition systems in ML.
- Modal logic is has good computational and model theoretic properties - decidable, finite model property, tree model property.
- Modal logic is remarkably well behaved when extended with useful features.

The Straw Man

The ML translation lives within the 2-variable fragment of FOL logic. Is this the source of the good properties?

$$\llbracket \diamond_{\alpha} \diamond_{\beta} p \rrbracket(x) = \exists y.R_{\alpha}(x,y) \land (\exists z.R_{\beta}(y,z) \land P(z)) \\ = \exists y.R_{\alpha}(x,y) \land (\exists x.R_{\beta}(y,x) \land P(x))$$

The Straw Man

The ML translation lives within the 2-variable fragment of FOL logic. Is this the source of the good properties?

$$\begin{split} \llbracket \diamond_{\alpha} \diamond_{\beta} p \rrbracket(x) &= \exists y. R_{\alpha}(x, y) \land (\exists z. R_{\beta}(y, z) \land P(z)) \\ &= \exists y. R_{\alpha}(x, y) \land (\exists x. R_{\beta}(y, x) \land P(x)) \end{split}$$

Did anybody really believe this?

Extensions with Fixed Points

- We can extend modal logic (variants) with fixed point operators. This greatly improves the expressive power.
- Generally this doesn't affect the notion of bisimilarity, but instead leads to expressive completeness results in stronger logics, for example:

$$\mathsf{MSO}/{\sim}\equiv L_{\mu}$$

 From a model comparison point of view, these extensions "come for free".

Going Backwards

What if we add backwards modalities?

$$\llbracket \diamond^-_lpha arphi \rrbracket(x) = \exists y. R_lpha(y,x) \land \llbracket arphi \rrbracket(y)$$

Going Backwards

What if we add backwards modalities?

$$\llbracket \diamond^-_lpha \varphi \rrbracket(x) = \exists y. R_lpha(y, x) \land \llbracket \varphi \rrbracket(y)$$

We need to adjust our notion of bisimilarity, by adding two new clauses, for B(I, r)

- For all unary predicates P(I) if and only if P(r).
- If $I \xrightarrow{\alpha} I'$ then there exists r' such that $r \xrightarrow{\alpha} r'$ and B(I', r').
- If $r \xrightarrow{\alpha} r'$ then there exists l' such that $l \xrightarrow{\alpha} l'$ and B(l', r').
- If $l' \xrightarrow{\alpha} l$ then there exists r' such that $r' \xrightarrow{\alpha} r$ and B(l', r').
- If $r' \xrightarrow{\alpha} r$ then there exists I' such that $I' \xrightarrow{\alpha} I$ and B(I', r').

A Comonad for Two-Way Bisimulation

We can adjust our previous comonad for ML as follows:

We now consider sequences with forwards and backwards edges, for example:

$$[a_0 \xrightarrow{lpha} a_1 \xleftarrow{eta} a_2]$$

Respecting transition relations appropriately.

We extend the edge relations in the resulting structure, now with two rules:

$$[a_0...a_n] \xrightarrow{\alpha} [a_0...a_n \xrightarrow{\alpha} a_{n+1}]$$
$$[a_0...a_n \xleftarrow{\alpha} a_{n+1}] \xrightarrow{\alpha} [a_0...a_n]$$

The remaining structure is analogous to before.

Jumping About

What if we add a global modality?

 $[\![\exists \varphi]\!](x) = \exists y.[\![\varphi]\!](y)$

・ロト・日本・モト・モート ヨー うへで

Jumping About

What if we add a global modality?

$$\llbracket \exists \varphi \rrbracket(x) = \exists y. \llbracket \varphi \rrbracket(y)$$

We need to adjust our notion of bisimilarity:

- For all unary predicates P(I) if and only if P(r).
- If $I \xrightarrow{\alpha} I'$ then there exists r' such that $r \xrightarrow{\alpha} r'$ and B(I', r').
- If $r \xrightarrow{\alpha} r'$ then there exists l' such that $l \xrightarrow{\alpha} l'$ and B(l', r').

- For all a' there exists b' such that B(a, b')
- For all b' there exists a' such that B(a', b)

A Comonad Incorporating Global Modalities

We can further adjust our comonad as follows:

We add a third edge type [∃]→, so we now have sequences of the form:

$$[a_0 \xrightarrow{\alpha} a_1 \xleftarrow{\beta} a_2 \xrightarrow{\exists} a_3]$$

Where \exists -edges may appear between any two states.

We don't add a new edges in the resulting structure, and the remaining components remain as before.

A Comonad Incorporating Global Modalities

We can further adjust our comonad as follows:

We add a third edge type [∃]→, so we now have sequences of the form:

$$[a_0 \xrightarrow{\alpha} a_1 \xleftarrow{\beta} a_2 \xrightarrow{\exists} a_3]$$

Where \exists -edges may appear between any two states.

- We don't add a new edges in the resulting structure, and the remaining components remain as before.
- But, we could have instead have allowed sequences to start anywhere, not just at a₀. Take home message - there will in general be non-isomorphic comonads encoding the same game.

So what have we added?

The various modalities appear in FOL as:

Ordinary ML modality:

$$\exists y. R_{\alpha}(x, y) \land \varphi(y)$$

Backwards ML modality:

$$\exists y. R_{\alpha}(y, x) \land \varphi(x)$$

Global modality:

$$\exists y.\varphi(y) \\ \exists y.(y = y) \land \varphi(y)$$

So what have we added?

The various modalities appear in FOL as:

Ordinary ML modality:

$$\exists y. R_{\alpha}(x, y) \land \varphi(y)$$

Backwards ML modality:

$$\exists y. R_{\alpha}(y, x) \land \varphi(x)$$

Global modality:

$$\exists y.\varphi(y) \\ \exists y.(y = y) \land \varphi(y)$$

We could also consider polyadic modalities:

$$\llbracket \diamond_{\pi}(\varphi,\psi) \rrbracket(x) = \exists y, z. R_{\pi}(x,y,z) \land \llbracket \varphi \rrbracket(y) \land \llbracket \psi \rrbracket(z)$$

(although bisimilarity and the comonad get uglier) (

Re-inventing (Atom) Guarded Logic

The previous use of quantifiers were all of the form:

 $\exists \overline{y}. \alpha(\overline{x}, \overline{y}) \land \varphi(\overline{y})$

Widely generalizing what we saw on the previous two slides, we restrict to *any* use of quantifiers of the form:

$$\exists \overline{y}.\alpha(\overline{x},\overline{y}) \land \varphi(\overline{x},\overline{y}) \qquad \forall \overline{y}.\alpha(\overline{x},\overline{y}) \Rightarrow \varphi(\overline{x},\overline{y})$$

Here:

- We use vector quantifiers as things cannot be done iteratively in general.
- α is an atom, referred to as the guard, an x̄, ȳ must appear in α. The variable appearing in x̄, ȳ is called a guarded set.
- φ is a formula in which only variables in $\overline{x}, \overline{y}$ may appear.
- Note that we are certainly not restricted to two variables!

Following the pattern that has emerged, we need yet another notion of bisimulation.

Guarded Bisimulation

We consider a non-empty set I of partial isomorphisms rather than a binary relation B.

- For every guarded set X' ⊆ A there exists f' ∈ I with domain X' such that f and f' agree on X ∩ X'.
- For every guarded set Y' ⊆ B there exists f' ∈ I with range Y' such that f⁻¹ and f'⁻¹ agree on Y ∩ Y'.

Back and Forth Condition

For every guarded set $X' \subseteq A$ there exists $f' \in I$ with domain X' such that f and f' agree on $X \cap X'$.

- ► So we're interested in sequences of guarded sets [S₁, S₂, ..., S_n].
- We restrict to sequences $S_i \cap S_{i+1} \neq \emptyset$.
- We need to say where each element of these sets should go, we instead we consider pairs of the form:

$$([S_1, ..., S_n], a)$$

with the S_i overlapping, and $a \in S_n$.

Back and Forth Condition

For every guarded set $X' \subseteq A$ there exists $f' \in I$ with domain X' such that f and f' agree on $X \cap X'$.

We need to force the "agree on overlaps condition", so we quotient:

$$([S_1,...,S_n],a) \sim ([S_1,...,S_n,S_{n+1}],a)$$

- We add relations based on the second components of the pairs.
- ϵ extracts the second component, and δ is a bit icky!
- This all works out after detailed checking, and yields a legitimate comonad on relational structures.

Discussion

Choices

 We chose to enforce pairwise overlap in our sequences [S₁,..., S_n]. This is not essential, just less "flabby".

Discussion

Choices

We chose to enforce pairwise overlap in our sequences [S₁,..., S_n]. This is not essential, just less "flabby".

More importantly, the quotient is icky, and seems slightly morally wrong from a comonadic point of view.

Cleaning up a bit

Consider two pairs:

$$([S_1, ..., S_n], a)$$
 and $([S_1, ..., S_n, S_{n+1}], a)$

We don't really need the second pair, so we can just throw it away.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cleaning up a bit

Consider two pairs:

 $([S_1, ..., S_n], a)$ and $([S_1, ..., S_n, S_{n+1}], a)$

We don't really need the second pair, so we can just throw it away.

More generally, we call a pair:

$$([S_1, ..., S_n, S_{n+1}], a)$$

canonical if a appears in S_{n+1} , but not in S_n . We restrict our attention to canonical pairs.

Cleaning up a bit

Consider two pairs:

 $([S_1, ..., S_n], a)$ and $([S_1, ..., S_n, S_{n+1}], a)$

We don't really need the second pair, so we can just throw it away.

More generally, we call a pair:

$$([S_1, ..., S_n, S_{n+1}], a)$$

canonical if a appears in S_{n+1} , but not in S_n . We restrict our attention to canonical pairs.

- During our constructions, non-canonical pairs naturally arise.
 We can always *canonicalize* by "working backwards" to a canonical pair.
- This again yields a legitimate comonad after detailed checking, circumventing the aesthetically distracting quotient.

Discussion

By working with canonical pairs:

We simplify studying homomorphisms:

 $D(X) \rightarrow Y$

as D(X) avoids the need for a quotient.

Some of the structure needs to carefully canonicalize in places, so depending on your preferences, some of the comonadic structure may seem slightly more complicated.

Conclusions

- So far we have candidate comonads for the guarded fragment, and various intermediate logics extending ordinary ML. These should generalize smoothly to more general guards, as far as clique guarded logics.
- There is also Unary Negation Logic (UNFO), and the very general Guarded Negation Logic (GNFO) - comonads for these are work in progress.
- The aim then is to study computational and model theoretic aspects of these logics, from the semanticists point of view.
- It would be nice to be able to present these comonads in a cleaner way. For monads equational presentations are incredibly useful, ambition to have analogous tools for the dual situation.