
Guards, Structure and Power

Dan Marsden1

March 26, 2020

1Joint work with Samson Abramsky, Tom Paine and Nihil Shah



Outline

I Background on Games

I Introduction to the Structure and Power set up

I Detailed examination of modal logic related comonads
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Model Comparison Games

I Pebbling games - model equivalence with k-variable FOL.

I Ehrenfeuct-Fräıssé games - model equivalence with quantifier
depth k FOL.

I Bisimulation games - “Behavioural equivalence” for k-steps



Basic Bisimilarity

Bisimulations and Bisimilarity

Given two non-deterministic transition systems, Left and Right, a
bisimulation between Left and Right is a binary relation B such
that if B(l , r):

I If l → l ′ then there exists r ′ such that r → r ′ and B(l ′, r ′).

I If r → r ′ then there exists l ′ such that l → l ′ and B(l ′, r ′).

If two states are related by a bisimulation, we say that they are
bisimilar.

Interactive Perspective

We can phrase this as a 2-player game between:

I Spoiler - choosing moves to show that two states are not
bisimilar

I Duplicator - choosing responses maintaining that the states
are bisimilar
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Bisimulation Games
A Win for Duplicator

Example (A Play of the Bisimulation Game)

In the structures below, w and a are bisimilar.
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Bisimulation Games
A Win for Spoiler

Example (Another Play of the Bisimulation Game)

In the structures below, w and a are not bisimilar:
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Bisimulation Games
A Win for Spoiler

Example (Another Play of the Bisimulation Game)

In the structures below, w and a are not bisimilar:
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And spoiler has won. But notice it took 2 rounds to force the win.



A Simulation Game
A Restricted Game

We now consider games where players are restricted to one side.

Example (Spoiler on the left)
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If Duplicator has a winning strategy, as in this case, we say Right
simulates Left.



A Simulation Game
A Restricted Game

We now consider games where players are restricted to one side.

Example (Spoiler on the right 1)
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A Simulation Game
A Restricted Game

We now consider games where players are restricted to one side.

Example (Spoiler on the right 2)
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So we also have Left simulates Right. But they are not bisimilar.



Relational Structures

Relational Structures
Basic definitions:

I A relational signature Σ is a set of relation symbols, each with
an associated arity.

I A relational structure over Σ is a set A equipped with a
relation Rσ ⊆ An for each relation symbol σ ∈ Σ with arity n.

I A homomorphism of relational structures of type h : A→ B is
a function between the underlying sets such that:

Rσ(a1, ..., an)⇒ Rσ(ha1, ..., han)



Making Life Easier

Informal Question
If there is no homomorphism of type:

A→ B

How can we make it easier to construct one?

Imprecise Answer

We make the codomain “bigger”:

A→B
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Making Life Harder

Dual Informal Question
If there is a homomorphism of type:

A→ B

How can we make it harder to construct one?

Dual Imprecise Answer

A→ B



Measuring How Hard Life Is?

A→ B

A→ B

A→ B

A→ B

A→ B

A→B
I Bigger on the right, life gets easier, as we have more resources.

I Bigger on the left, life gets harder, as we have more
coresources.



Keisler-Shelah Isomorphism Theorem
An Analogous Result

Elementary Equivalence as Isomorphism

Given relational structures A and B we can find “bigger”
structures such that we have an isomorphism:

A ∼=B
if and only if A and B are elementary equivalent.



Categorical Framework

The Plan
For a given notion of game, we wish to introduce a comonad D
such that homomorphisms:

D(A)→ B

correspond to winning strategies for duplicator in the existential
version of the game.

In fact, these comonads will be graded, with
the grading quantifying the amount of coresources that can be
catered for.

Dk(A)→ B
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Categorical Framework

Concretely for Bisimulation

We construct a comonad Dk such that homomorphisms:

Dk(A)→ B

correspond to a winning strategy for the k-round simulation game
showing B can simulate A.



Recap: Whats a comonad?

Comonads
A comonad on a category C consists of:

I An endofunctor D : C → C.

I A counit natural transformation ε : D ⇒ 1.

I A comultiplication natural transformation δ : D ⇒ D ◦ D.

Satisfying obvious coherence conditions. More succinctly, a
comonad on C is a comonoid in the endofunctor monoidal
category ([C, C], ◦, 1).



An Instructive Example

Example (Non-empty lists)

There is a comonad on the category of sets and functions with:

I D(X ) is the set of of non-empty finite lists of elements
from X .

I ε is the tail function, e.g. ε[x , y , z ] = z .

I δ is the prefix function, e.g. δ[x , y , z ] = [[x ], [x , y ], [x , y , z ]].



A Baby Comonad for Bisimulation
We will be looking at bisimilarity between a particular pair of
elements (a0, b0), so we use pointed structures (A, a0).

I We would like elements of D(X ) to encode spoilers moves so
far, starting from a0.

I A natural choice would be sequences [a0, a1, ..., an] where
there is a transition ai → ai+1. It will be convenient to write
these:

[a0 → a1 → ...→ an]

I To lift this to a transition system, we add transitions:

[a0 → ...→ an]→ [a0 → ...→ an → an+1]

I Finally, we make [a0] the point of the new structure.

I We restrict to sequences of length k to yield a comonad for
k-step bisimilarity.
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Grown-up Bisimulation

Our notion of bisimilarity was as simple as possible. Two natural
extensions:

I Allow for multiple different transition relations α, β, ...

I Allow unary predicates on states, P,Q, ...

Labelled Transition System Bisimilarity

Given two non-deterministic labelled transition systems, Left and
Right, a bisimulation between Left and Right is a binary relation B
such that if B(l , r):

I For all unary predicates P(l) if and only if P(r).

I If l
α−→ l ′ then there exists r ′ such that r

α−→ r ′ and B(l ′, r ′).

I If r
α−→ r ′ then there exists l ′ such that l

α−→ l ′ and B(l ′, r ′).

If two states are related by a bisimulation, we say that they are
bisimilar.



A Grown-Up Bisimulation Comonad

We adjust our baby comonad as follows:

I We now define D(X ) to be sequences of the form:

[a0
α−→ a1...an−1

γ−→ an]

I We generate the transition relations on our new structure as
follows:

[a0...an]
α−→ [a0...an

α−→ an+1]

I Predicates are defined on the new structure by:

P ([a0...an])⇔ P(an)



Modal Logic

Syntax

ϕ = p | ¬ϕ | ϕ ∧ ϕ | �αϕ | ⊥

Intuitive Reading

I p - proposition P holds in the current state.

I �αp - we can make an α transition to a state in which
proposition P holds.

I Logical connectives have their usual reading, for
example ϕ ∧ ψ - ϕ and ψ hold in the current state.



Semantics

Translation
Given a modal formula, we can construct a unary formula JϕK(x)
in FOL as follow:

J�αϕK(x) := ∃y .Rα(x , y) ∧ JϕK(y)

JpK(x) := P(x)

J¬ϕK(x) := ¬JϕK(x)

Jϕ ∧ ψK(x) := JϕK(x) ∧ JψK(x)

J⊥K(x) := x 6= x

Call formulae equivalent to those in the image of this translation
the modal fragment of FOL.



Tying a Knot

ML and Bisimulation
Modal logic is the bisimulation invariant fragment of FOL:

FO/∼ ≡ ML

But why do we care?

I Modal logic is a bit weak - we cannot make natural sounding
statements about transition systems in ML.

I Modal logic is has good computational and model theoretic
properties - decidable, finite model property, tree model
property.

I Modal logic is remarkably well behaved when extended with
useful features.
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Why is ML Nice?

The Straw Man
The ML translation lives within the 2-variable fragment of FOL
logic. Is this the source of the good properties?

J�α �β pK(x) = ∃y .Rα(x , y) ∧ (∃z .Rβ(y , z) ∧ P(z))

= ∃y .Rα(x , y) ∧ (∃x .Rβ(y , x) ∧ P(x))

Did anybody really believe this?
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Extensions with Fixed Points

I We can extend modal logic (variants) with fixed point
operators. This greatly improves the expressive power.

I Generally this doesn’t affect the notion of bisimilarity, but
instead leads to expressive completeness results in stronger
logics, for example:

MSO/∼ ≡ Lµ

I From a model comparison point of view, these extensions
“come for free”.



Going Backwards

What if we add backwards modalities?

J�−αϕK(x) = ∃y .Rα(y , x) ∧ JϕK(y)

We need to adjust our notion of bisimilarity, by adding two new
clauses, for B(l , r)

I For all unary predicates P(l) if and only if P(r).

I If l
α−→ l ′ then there exists r ′ such that r

α−→ r ′ and B(l ′, r ′).

I If r
α−→ r ′ then there exists l ′ such that l

α−→ l ′ and B(l ′, r ′).

I If l ′
α−→ l then there exists r ′ such that r ′

α−→ r and B(l ′, r ′).

I If r ′
α−→ r then there exists l ′ such that l ′

α−→ l and B(l ′, r ′).
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A Comonad for Two-Way Bisimulation

We can adjust our previous comonad for ML as follows:

I We now consider sequences with forwards and backwards
edges, for example:

[a0
α−→ a1

β←− a2]

Respecting transition relations appropriately.

I We extend the edge relations in the resulting structure, now
with two rules:

[a0...an]
α−→ [a0...an

α−→ an+1]

[a0...an
α←− an+1]

α−→ [a0...an]

I The remaining structure is analogous to before.



Jumping About

What if we add a global modality?

J∃ϕK(x) = ∃y .JϕK(y)

We need to adjust our notion of bisimilarity:

I For all unary predicates P(l) if and only if P(r).

I If l
α−→ l ′ then there exists r ′ such that r

α−→ r ′ and B(l ′, r ′).

I If r
α−→ r ′ then there exists l ′ such that l

α−→ l ′ and B(l ′, r ′).

I For all a′ there exists b′ such that B(a, b′)

I For all b′ there exists a′ such that B(a′, b)
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A Comonad Incorporating Global Modalities

We can further adjust our comonad as follows:

I We add a third edge type
∃−→, so we now have sequences of

the form:
[a0

α−→ a1
β←− a2

∃−→ a3]

Where ∃-edges may appear between any two states.

I We don’t add a new edges in the resulting structure, and the
remaining components remain as before.

I But, we could have instead have allowed sequences to start
anywhere, not just at a0. Take home message - there will in
general be non-isomorphic comonads encoding the same
game.
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So what have we added?
The various modalities appear in FOL as:

I Ordinary ML modality:

∃y .Rα(x , y) ∧ ϕ(y)

I Backwards ML modality:

∃y .Rα(y , x) ∧ ϕ(x)

I Global modality:

∃y .ϕ(y)

∃y .(y = y) ∧ ϕ(y)

I We could also consider polyadic modalities:

J�π(ϕ,ψ)K(x) = ∃y , z .Rπ(x , y , z) ∧ JϕK(y) ∧ JψK(z)

(although bisimilarity and the comonad get uglier)
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Re-inventing (Atom) Guarded Logic

The previous use of quantifiers were all of the form:

∃y .α(x , y) ∧ ϕ(y)

Widely generalizing what we saw on the previous two slides, we
restrict to any use of quantifiers of the form:

∃y .α(x , y) ∧ ϕ(x , y) ∀y .α(x , y)⇒ ϕ(x , y)

Here:

I We use vector quantifiers as things cannot be done iteratively
in general.

I α is an atom, referred to as the guard, an x , y must appear
in α. The variable appearing in x , y is called a guarded set.

I ϕ is a formula in which only variables in x , y may appear.

I Note that we are certainly not restricted to two variables!



Guarded Bisimulation

Following the pattern that has emerged, we need yet another
notion of bisimulation.

Guarded Bisimulation
We consider a non-empty set I of partial isomorphisms rather than
a binary relation B.

I For every guarded set X ′ ⊆ A there exists f ′ ∈ I with
domain X ′ such that f and f ′ agree on X ∩ X ′.

I For every guarded set Y ′ ⊆ B there exists f ′ ∈ I with
range Y ′ such that f −1 and f ′−1 agree on Y ∩ Y ′.



GF Comonad, Take One

Back and Forth Condition
For every guarded set X ′ ⊆ A there exists f ′ ∈ I with domain X ′

such that f and f ′ agree on X ∩ X ′.

I So we’re interested in sequences of guarded
sets [S1,S2, ...,Sn].

I We restrict to sequences Si ∩ Si+1 6= ∅.
I We need to say where each element of these sets should go,

we instead we consider pairs of the form:

([S1, ...,Sn], a)

with the Si overlapping, and a ∈ Sn.



GF Comonad, Take One

Back and Forth Condition
For every guarded set X ′ ⊆ A there exists f ′ ∈ I with domain X ′

such that f and f ′ agree on X ∩ X ′.

I We need to force the “agree on overlaps condition”, so we
quotient:

([S1, ...,Sn], a) ∼ ([S1, ...,Sn, Sn+1], a)

I We add relations based on the second components of the
pairs.

I ε extracts the second component, and δ is a bit icky!

I This all works out after detailed checking, and yields a
legitimate comonad on relational structures.



GF Comonad, Take One
Discussion

Choices

I We chose to enforce pairwise overlap in our
sequences [S1, ...,Sn]. This is not essential, just less “flabby”.

I More importantly, the quotient is icky, and seems slightly
morally wrong from a comonadic point of view.
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GF Comonad, Take Two
Cleaning up a bit

I Consider two pairs:

([S1, ...,Sn], a) and ([S1, ...,Sn,Sn+1], a)

We don’t really need the second pair, so we can just throw it
away.

I More generally, we call a pair:

([S1, ...,Sn, Sn+1], a)

canonical if a appears in Sn+1, but not in Sn. We restrict our
attention to canonical pairs.

I During our constructions, non-canonical pairs naturally arise.
We can always canonicalize by “working backwards” to a
canonical pair.

I This again yields a legitimate comonad after detailed
checking, circumventing the aesthetically distracting quotient.
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GF Comonad, Take Two
Discussion

By working with canonical pairs:

I We simplify studying homomorphisms:

D(X )→ Y

as D(X ) avoids the need for a quotient.

I Some of the structure needs to carefully canonicalize in
places, so depending on your preferences, some of the
comonadic structure may seem slightly more complicated.



Conclusions

I So far we have candidate comonads for the guarded fragment,
and various intermediate logics extending ordinary ML. These
should generalize smoothly to more general guards, as far as
clique guarded logics.

I There is also Unary Negation Logic (UNFO), and the very
general Guarded Negation Logic (GNFO) - comonads for
these are work in progress.

I The aim then is to study computational and model theoretic
aspects of these logics, from the semanticists point of view.

I It would be nice to be able to present these comonads in a
cleaner way. For monads equational presentations are
incredibly useful, ambition to have analogous tools for the
dual situation.


