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Preface
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ICALP 2022) and 2023 (in Boston and online, affiliated with LiCS 2023).

The program of the SmP 2024 workshop focuses on bridging the divide in the
field of logic in Computer Science, between two distinct strands: one focusing on
semantics and compositionality (“Structure”), the other on expressiveness and
complexity (“Power”). It is remarkable because these two fundamental aspects
of our field are studied using almost disjoint technical languages and methods,
by almost disjoint research communities. We believe that bridging this divide
is a major issue in Computer Science, and may hold the key to fundamental
advances in the field. The aim of the Structure meets Power workshop is to
cultivate interaction between researchers who are interested in combining ideas
from these two strands.

On July 2, 2024
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Where Büchi meets Parity
(INVITED TALK)

Karoliina Lehtinen

Abstract:
Automata over infinite objects are often defined either with a Büchi con-

dition, which requires an accepting run to encounter something good infinitely
often, or a Parity condition, which requires the most significance colour that
occurs infinitely often on the run to be even.

Classic automata theory tells us that over infinite words, nondeterministic
Büchi automata are as expressive as nondeterministic parity automata. Namely,
both models recognise all ω-regular languages. Another by now classic result
tells us that this is not the case over infinite trees, over which nondeterministic
parity automata are much more expressive: unlike over words, no strictly weaker
acceptance condition can recognise the same set of languages.

This raises the following question: over which classes of trees, beyond words,
is the Büchi condition as expressive as the parity condition. In other words,
when is Büchi enough?

In this talk, I will first take you on a tour of some of these classic results on
the relative power of the Büchi and parity acceptance conditions, and how they
relate to linear temporal logic and the modal µ-calculus. I will then revisit some
of these methods and give a preview of fresh results characterising the classes of
infinite trees over which Büchi automata are as expressive as parity automata.
Finally, I will survey both long-standing and newer open problems on the power
of there automata over different structures. Along the way, I will mention how
these problems relate to the quest for a polynomial time algorithm for solving
parity games.
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Sweedler theory of monads
(INVITED TALK)

Tarmo Uustalu

Abstract:
Monad-comonad interaction laws are a mathematical concept for describing

communication protocols between effectful computations and coeffectful envi-
ronments in the paradigm where notions of effectful computation are modelled
by monads and notions of coeffectful environment by comonads.

In this talk, I will demonstrate that monad-comonad interaction laws are an
instance of measuring maps from López Franco and Vasilakopoulou’s Sweedler
theory for duoidal categories. The final interacting comonad for a monad and
a residual monad arises as the Sweedler hom and the initial residual monad for
a monad and an interacting comonad as the Sweedler copower.

I will explain a (co)algebraic characterization of monad-comonad interaction
laws and how it leads to descriptions of the Sweedler hom and the Sweedler
copower in terms of their coalgebras resp. algebras.

Joint work with Dylan McDermott and Exequiel Rivas.

5



A fibrational approach to regular languages of λ-terms
Vincent Moreau

IRIF, Université Paris Cité, Inria Paris, Paris, France
moreau@irif.fr

This is joint work with Paul-André Melliès.

Regular languages of λ-terms. There is a growing connection between automata theory
and the theory of λ-calculus. Indeed, the Church encoding shows that finite words and ranked
trees can be seen as simply typed λ-terms. For instance, words over the alphabet Σ = {a, b}
correspond to λ-terms of type

ChurchΣ := (o ⇒ o)︸ ︷︷ ︸
a transition

⇒ (o ⇒ o)︸ ︷︷ ︸
b transition

⇒ o︸︷︷︸
initial state

⇒ o︸︷︷︸
output state

Moreover, their semantic interpretations in the cartesian closed category FinSet coincides with
their behavior in finite deterministic automata. This semantic observation led Salvati to define
the notion of recognizable language in [5] as any set of λ-terms of a given type A of the form

{M of type A | JMKQ ∈ F} for some finite set Q and subset F ⊆ JAKQ.

The recognizable languages of type ChurchΣ are then exactly the regular languages of words,
seen through the Church encoding.

Logic in a bifibration. The idea that quantifiers are adjoints has been developed by Law-
vere [3]. Inspired by [4], we follow this principle in its fibered form and reformulate Salvati’s
notion of regular language in terms of bifibrations preserving the CCC structure, highlighting
the generality of the ingredients we use.

We write SubSet for the category whose objects are pairs (X,S) where X is a set and
S ⊆ X, and whose morphisms are functions that restrict to the given subsets. The forgetful
functor SubSet → Set is a bifibration, with the pullback being the inverse image and the
pushforward being the direct image.

Moreover, SubSet is a CCC, with the internal hom being computed as

(X,S) ⇒ (Y, T ) := (X ⇒ Y, {f : X → Y s.t. ∀s ∈ S, f(s) ∈ T})
and the bifibration SubSet → Set is a CCC functor. We write Lam for the category of types
and simply typed λ-terms between them. We first ingredient is already known, see [2, Prop. 3.2].

Ingredient 1. The pullback of a CCC bifibration along a cartesian functor is a CCC bifibration.

We note JAK•Q the subset of JAKQ of points of the semantics which are λ-definable1. This
assembles into a functor J−K•Q : Lam → Set. By pullback, we hence obtain the bifibration

RegQ SubSet

Lam SetJ−K•Q

⌟

1q ∈ JAKQ is λ-definable if there exists a λ-term M of type A such that q = JMKQ. This restriction on the
subset F ⊆ JAKQ removes useless recognizers and can be enforced without loss of generality, but the point of
choosing λ-definable elements is really to be able to use Ingredient 2 later on.
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A fibrational approach to regular languages of λ-terms Moreau

More concretely, an object of RegQ is a pair (A,F ) where A is a type and F ⊆ JAK•Q is a subset
of recognizers. As the functor J−K•Q : Lam → Set preserves cartesian products, we obtain that
RegQ is a CCC and the bifibration RegQ → Lam is a CCC functor.

Ingredient 2. A natural transformation between cartesian functors induces an adjunction
between the respective pullbacks.

We now explain how the different bifibrations RegQ are related. We make extensive use of
the lemma of partial surjections [1, Prop. 3.2]. It implies that, for any finite sets Q and Q′ such
that Q′ is of greater cardinality than Q, we have a natural transformation ρ : J−K•Q′ ⇒ J−K•Q.
We thus obtain the adjunction

RegQ′ RegQ

Lam

⊣

obtained by pulling and pushing along ρ. The right adjoint represents the inclusion of Q-regular
language into Q′-regular languages, and preserves pullbacks but not pushforwards. As such, it
is merely a morphism of fibrations, not a morphism of bifibrations.

Ingredient 3. The right adjoint induced by a natural transformation is a CCC functor if and
only if the natural transformation satisfies Frobenius reciprocity.

It follows from the general construction of Ingredient 2 that the functor R : RegQ ↪→ RegQ′

preserves cartesian products. However, such a functor R does not preserve internal homs in
general. Yet, the natural transformation ρ verifies the following Frobenius reciprocity condition
over Lam: for any F ⊆ JAK•Q and G ⊆ JA ⇒ BK•Q′ , the morphism

∃ρA
(∃ev(ρ−1

A (F )× ∃ap(G))) −→ ∃ev(F × ∃ap(∃ρA⇒B
(G)))

is an isomophism, where ap : JA ⇒ BK• → JAK• ⇒ JBK• is the canonical morphism obtained by
currying the image of the evaluation. As a consequence, the functor R : RegQ ↪→ RegQ′ is a
CCC functor.

We define Reg as the colimit of all the RegQ. It comes with a functor into Lam, and as
the inclusion functors RegQ ↪→ RegQ′ preserve pullbacks and are CCC functors, we get that

Reg → Lam is a fibration of CCCs.

This generalizes some usual constructions of automata theory like the Brzozowski derivative.

Salvati’s counterexample and MSO. The functor Reg → Lam has no reason to be an
opfibration. This motivates us to give the following definition: a λ-term in Lam(A,B) will be
said to preserve regular languages if, for any regular languages of type A, its image by the λ-term
is a regular language of type B, or equivalently, i.e. if it has an opcartesian lifting to Reg. The
ability to push forward amounts to have an existential quantifier.

This is already witnessed at the level of trees: indeed, if we consider the types of trees

A := (o ⇒ o) ⇒ (o ⇒ o) ⇒ o ⇒ o

B := (o ⇒ o ⇒ o) ⇒ (o ⇒ o) ⇒ o ⇒ o

7



A fibrational approach to regular languages of λ-terms Moreau

then the λ-term of type A ⇒ B defined as λt.λf.f (λx.f x x) does not preserve regular languages.
This corresponds to the fact that languages of trees are not closed by any homomorphic images,
but only the linear ones2. Another, more involved example is given by Salvati in [5, §5.2].

However, some λ-terms preserve regular language. Indeed, the fact that any λ-term t of
type A, seen as an element of Lam(1, A), preserves regular languages is exactly Statman’s
theorem, as the singleton language {t} of type A is the pushforward along t of the singleton
language of type 1.

In future work, we would like to find a sufficient condition for the preservation of regular
languages, that would generalize Statman’s theorem. This would constitute a first step towards
a monadic second order logic for λ-terms.

References
[1] Sam van Gool, Paul-André Melliès, and Vincent Moreau. Profinite lambda-terms and parametricity.

Electronic Notes in Theoretical Informatics and Computer Science, Volume 3 - Proceedings of MFPS
XXXIX , November 2023.

[2] M. Hasegawa. Categorical glueing and logical predicates for models of linear logic. Preprint RIMS-
1223, Kyoto University, 1999. http://www.kurims.kyoto-u.ac.jp/~hassei/papers/full.pdf.

[3] F. William Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969.
[4] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In Sriram K.

Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 3–16. ACM, 2015.

[5] Sylvain Salvati. Recognizability in the simply typed lambda-calculus. In Hiroakira Ono, Makoto
Kanazawa, and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and Computation,
16th International Workshop, WoLLIC 2009, Tokyo, Japan, June 21-24, 2009. Proceedings, volume
5514 of Lecture Notes in Computer Science, pages 48–60. Springer, 2009.

2The non-linearity is not between A and B, but inside of B
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A Categorical Approach to Compositional
Probabilistic Model Checking⋆

Kazuki Watanabe

National Institute of Informatics, Tokyo

1 Proposal

I would like to contribute a talk outlining our recent published works [21–23].
Systems with uncertainties, including Markov decision processes (MDPs) [17],

are a main subject in verification. Markov decision processes have not only uncer-
tainties induced by probabilistic transitions, but also non-determinisms induced
by choices of probabilistic transitions. Choosing a scheduler on MDPs resolves
a non-determinism, and optimal choices of schedulers are a central question in
verification and planning. Specifically, a classical verification problem on MDPs
is to find an optimal scheduler that resolves the non-determinism and maxi-
mizes the reachability probabilities or expected rewards until the target states
are reached.

MDPs have also been actively studied in the context of computational effects
and coalgebras. A seminal work by Varacca and Winskel [19] shows that there
is no distributive law of the powerset monad over the distribution monad on the
category of sets, the proof of which is credited to Gordon Plotkin. This result
implies that a corresponding computational effect of MDPs is unlikely to have a
monad structure, which raises a question about the compositionality of MDPs.
There are several approaches to this problem: Varacca and Winskel [19] propose
indexed valuations, Bonchi et al. [4] provide a trace semantics with the monad of
convex subsets of distributions [16, 19], and Jacobs [13] provides an underlying
theory of distributivities of the multiset monad over the distribution monad.

Compositionality is a fundamental property in category theory, and it has
recently received attention in verification, including model checking. However,
it has turned out to be challenging to obtain efficient compositional algorithms.
Compositional probabilistic verification with respect to the product of MDPs
has been proposed by Kwiatkowska et al. [15]. Since their framework is an
assume-guarantee framework, it requires finding a suitable contract. Junges and
Spaan [14] proposed a sequentially composed model checking algorithm with
abstraction-refinement. A crucial assumption in [14] is the existence of optimal
local sub-schedulers, which can be enforced to hold by restricting the form of
sequential compositions.

Our recent series of works [21–23] addresses compositionality in probabilistic
model checking with string diagrams. String diagrams are a celebrated graphical
⋆ This talk is based on the joint works with Clovis Eberhart, Kazuyuki Asada, Ichiro

Hasuo, Marck van der Vegt, Jurriaan Rot, and Sebastian Junges.
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2 K. Watanabe et al.

expression based on monoidal category theory. There are many successful appli-
cations of string diagrams, including quantum computing [2, 5], Petri nets [3, 18],
ω-game [20], and games in economics [10]. The ultimate goal of our works [21–
23] is to provide an efficient compositonal probabilistic model checking of MDPs
with string diagrams, solving the notorious state space explosion problem.

In [21], we present the first compositional probabilistic model checking of
MDPs with string diagrams. A crucial observation in [21] is that the positional
determinacy of MDPs leads to a compositional reasoning. Positional determinacy
is the property that says that positional schedulers do suffice. We then solve
uncertainties on MDPs by the change of enriching category with the finite power
set functor [6, 7]. We formalize our compositional probabilistic model checking
by a compact closed functor.

In [22, 23], we develop practical approximation algorithms based on Pareto
curves [8, 9]. We implemented our approximation algorithms in the model checker
Storm [12], and demonstrate their performances compared to the state-of-the-art
monolithic algorithm [11] and the exact compositional algorithm [21]. Unlike [21],
the semantics in [22, 23] are not formulated in a categorical way. We conjecture
that the semantics in [22, 23] can be interpreted as a Kleisli category of a certain
“Pareto monad”, which is mentioned in [1] as well.

References
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The free bifibration over a functor

Bryce Clarke & Gabriel Scherer & Noam Zeilberger

(Abstract submitted to Structure Meets Power 2024, May 16, 2024)

A functor p : D Ñ C between two categories is a bifibration when, roughly speaking, objects of D may
be pushed and pulled along arrows of C. Formally, for any arrow f : A Ñ B in C and any object S in D

such that ppSq “ A, there should be an object f˚ S and an arrow fS : S Ñ f˚ S of D such that ppfSq “ f ,

D S f˚ S

C A B

p

fS

f

which are universal in the sense that for any arrow g : B Ñ C in C and arrow α : S Ñ T in D such that
ppαq “ fg, there is a unique arrow β : f˚ S Ñ T such that α “ fS β.

S T

A B C

α

f g

“
S f˚ S T

A B C

fS β

f g

(1)

Dually, for any arrow g : B Ñ C in C and object T in D such that ppT q “ C, there should be an object g˚ T
and an arrow sgT : g˚ T Ñ T of D such that ppsgT q “ g,

g˚ T T

B C

sgT

g

again universal in the sense that for any arrow f : A Ñ B in C and arrow α : S Ñ T in D such that
ppαq “ fg, there is a unique arrow β : S Ñ g˚ T such that α “ β sgT .

S T

A B C

α

f g

“
S g˚ T T

A B C

β sgT

f g

(2)

An immediate consequence of the definition is that if p : D Ñ C is a bifibration then the operations of
pushing or pulling along an arrow f : A Ñ B of C extend to a pair of adjoint functors

DA DB

f˚

f˚

K

where DA and DB are the fiber categories defined as the subcategories of D spanned by the arrows living
over the identities idA and idB in C, and indeed any (cloven) bifibration over C may be equivalently described
by the data of a pseudofunctor C Ñ Adj into the category of small categories and adjunctions.

1
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The categorical notion of bifibration was originally introduced by Grothendieck, together with the weaker
notion of fibration where one only has the ability to pull objects of the category above along arrows of the
category below. One reason for the special interest of bifibrations from the perspective of logic and computer
science is that the operations of pushing forward or pulling back along an arrow may be seen as generalizations
of existential and universal quantification (cf. [MZ16]), and hence by alternating these operations one can in
some sense define objects of arbitrary quantifier complexity. The pushforward and pullback operations may
also be seen as generalizations of strongest postconditions and weakest preconditions in specification logics.

Although most functors are not bifibrations, any functor p : D Ñ C generates a free bifibration, in the
sense that there is a (cloven) bifibration Λp : Bifppq Ñ C and a functor ηp : D Ñ Bifppq such that p “ Λp ˝ηp.
Moreover, the free bifibration is universal in the sense that if q : E Ñ C is any bifibration equipped with
a functor θ : D Ñ E such that p “ q ˝ θ, then there is an essentially unique morphism of bifibrations
θ̃ : Bifppq Ñ E such that θ “ θ̃ ˝ ηp. Whereas the free fibration over a functor has a well-known and very
simple concrete description, the free bifibration has been relatively little studied, and describing it explicitly
is far more subtle. The problem of building the free bifibration over a functor p : D Ñ C is closely related
to the problem, studied by Dawson, Paré, and Pronk [DPP03a, DPP03b], of extending C to a 2-category
Π2C by freely adjoining right adjoints (cf. [SS86]). However, as far as we are aware there is only one direct
construction of the free bifibration over a functor in the literature, by Lamarche [Lam10, Lam14], Moreover,
it should be said that both constructions (and the proofs of their correctness) involve a significant degree of
combinatorial intricacy.

In our work, we have developed a number of alternative descriptions of the free bifibration over an
arbitrary functor p : D Ñ C. One description is proof-theoretic, viewing the objects of Bifppq as formulas in
a primitive logic containing unary connectives f˚ and f˚ for every morphism f of C, with the objects of D
serving as atomic formulas. The morphisms of Bifppq are then defined as equivalence classes of proofs in a
simple cut-free sequent calculus containing only four logical rules

S ùñfg T

f˚ S ùñg T
Lf˚

S ùñg T

S ùñgf f˚ T
Rf˚

S ùñg T

f˚ S ùñfg T
Lf˚ S ùñgf T

S ùñg f˚ T
Rf˚

where proofs are considered modulo four permutation relations, including the relations

S ùñfh T

S ùñfhg g˚ T
Rg˚

f˚ S ùñhg g˚ T
Lf˚

„
S ùñfh T

f˚ S ùñh T
Lf˚

f˚ S ùñhg g˚ T
Rg˚

S ùñh T

S ùñhg g˚ T
Rg˚

f˚ S ùñfhg g˚ T
Lf˚ „

S ùñh T

S˚ ùñfh T
Lf˚

f˚ S ùñfhg g˚ T
Rg˚

as well as their symmetric versions with pushforward and pullback swapped. The cut rule is admissible,
thereby defining composition of morphisms in Bifppq. This sequent calculus is closely related to an alternative
description of the free bifibration using double category theory. The double category of zigzags ZC has objects
and horizontal arrows given by the objects and arrows of C, vertical arrows given by zigzags (= signed
sequences of arrows) in C, and double cells of zigzag morphisms generated by vertical pastings of the four
generating cells below (ignore the colored arcs for now)

¨ ¨

¨ ¨

fg

f Lf˚

g

¨ ¨

¨ ¨

g

Rf˚ f

gf

¨ ¨

¨ ¨

g

Lf˚f

fg

¨ ¨

¨ ¨

gf

Rf˚

g

f

modulo four permutation relations. Composition of zigzag morphisms can be defined inductively by analysis
of the intermediate zigzag, thereby defining horizontal composition for the double category. The connection
with bifibrations is that ZC is the free bifibration over the identity functor idC : C Ñ C, while conversely,
any free bifibration may be reconstructed by pulling back the source functor src : ZC Ñ C of the double
category along an arbitrary functor p : D Ñ C. Finally, zigzag morphisms in ZC also have a natural graphical
interpretation (at least in the case where C is a free category) as certain planar arc diagrams considered up
to isotopy (see colored arcs above).

2
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A challenge in understanding free bifibrations is getting a handle on the equivalence classes of zigzag
morphisms induced by the permutation relations. Indeed, by a reduction of [DPP03b], this equivalence
relation is in general undecidable! One way we have attacked the problem is via the proof-theoretic technique
of focusing, developing a (for now conjectured) canonical form whereby permutation equivalence classes of
derivations in the above sequent calculus are represented by focused derivations modulo a much more rigid
notion of equivalence. When C is factorization preordered this notion of equivalence reduces to equality,
yielding a new proof of the decidability of zigzag morphism equality in that case, as first shown by [DPP03b].

Another way we have attacked the problem is by considering examples, and here is where it appears that
free bifibrations give rise to a number of categories of great combinatorial interest. A basic example is the
free bifibration over the functor p “ p˚ ÞÑ 0q : 1 Ñ 2 sending the unique object of 1 to the initial object of the
walking arrow category 2 “ t 0 Ñ 1 u. In this case, objects in the fiber over 0 are isomorphic to even-length
sequences of alternating pushes and pulls f˚ f˚ ¨ ¨ ¨ f˚ f˚ 0 along the unique arrow f : 0 Ñ 1, while objects
in the fiber over 1 correspond to odd-length sequences f˚ f˚ f˚ ¨ ¨ ¨ f˚ f˚ 0. When we consider morphisms,
it turns out that the fiber category Bifppq0 is equivalent to the (augmented) simplex category ∆ of finite
ordinals and order-preserving maps, under an interpretation reading the length 2n sequence f˚ f˚ ¨ ¨ ¨ f˚ f˚ 0
as the ordinal n “ t 0 ă 1 ă ¨ ¨ ¨ ă n ´ 1 u. Similarly, the fiber Bifppq1 is equivalent to the category ∆K
of finite non-empty ordinals and order-and-least-element-preserving maps. In particular, from the sequent
calculus for free bifibrations we can easily derive the well-known formula

`
n`m´1

m

˘
for the number of maps

m Ñ n in ∆. It is also worth mentioning that in this case the total category of the free bifibration is
equivalent Bifppq – Υ to the category of schedules Υ introduced by Harmer, Hyland, and Melliès [HHM07]
in their study of the categorical combinatorics of game semantics.

An even richer structure emerges considering the free bifibration over the functor p “ p˚ ÞÑ 0q : 1 Ñ N
sending the unique object of 1 to the initial object of the natural numbers considered as a posetal category
under the natural order. In this case, objects in the fiber of 0 are isomorphic to sequences of rising and falling
steps in N that start at 0 and end at 0. In other words, they correspond to Dyck paths! By the standard
bijection between Dyck paths and rooted planar trees, the fiber Bifppq0 may therefore be interpreted as
a category of trees, giving rise to an interesting notion of morphism of planar trees. Indeed, it turns out
that Bifppq0 is equivalent to a category of finite rooted planar trees that was defined in an entirely different
manner by Joyal [Joy97] and Batanin [Bat98], namely as the full subcategory of the functor category rNop ,∆s
consisting of those functors T : Nop Ñ ∆ such that T p0q “ 1 and such that T phq “ 0 for some h. Under
the Joyal-Batanin representation of planar trees, the ordinal T pnq counts the number of nodes of height n
from the root, while the monotone functions T pn` 1q Ñ T pnq map the nodes of height n` 1 to their parent
nodes of height n (these functions are necessarily order-preserving by planarity). It turns out that natural
transformations between such functors are in one-to-one correspondence with equivalence classes of zigzag
morphisms between the corresponding Dyck paths. In particular, we can enumerate natural transformations
between trees by enumerating focused derivations in the sequent calculus for the free bifibration. Finally, it
appears that we get some interesting combinatorics by fixing a tree T and considering the sequences

inrT sn “ #tα : T 1 Ñ T | |T 1| “ n u outrT sn “ #tα : T Ñ T 1 | |T 1| “ n u
counting all of the morphisms into T or out of T and out of/into a tree of a given size.
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This work introduces context-free languages of morphisms in monoidal categories, extending recent
work on regular languages of string diagrams and the categorification of context-free languages.
Context-free languages of string diagrams include classical context-free languages of words, trees,
and hypergraphs, when instantiated over appropriate monoidal categories.

Context-free languages over free monoids, and other categories. In recent work, Melliès
and Zeilberger [7, 8] pursue a structural approach to context-free grammars in terms of the “multiple-
input, single-output” multigraphs underlying multicategories. This leads to a notion of context-free
language ofmorphisms in a category, which recovers various generalizations of context-free languages.
The authors prove a generalized Chomsky-Schützenberger representation theorem [1] which hinges
on an adjunction between contouring multicategories and splicing morphisms in a category [8]. We
start by recalling the latter, which sets up the definition of context-free grammar over a category.

Definition 1 (Melliès and Zeilberger [8]). The multicategory of spliced arrows, W C, over a category
C, has, as objects, pairs of objects of C, denoted A

B. Its multimorphisms are morphisms of the original
category, but with n “gaps” or “holes”. More precisely, the multimorphisms of W C are given by:

W C(A1
B1
, . . . ,An

Bn
;XY ) := C(X;A1)×

n−1∏

i=1
C(Bi;Ai+1)× C(Bn;Y ).

By convention, nullary multimorphisms are morphisms of C, that is W C(;XY ) := C(X;Y ). The
identity is given by a pair of identities of the original category, multicategorical composition is derived
from the composition in the original category, by “splicing” into holes.

Definition 2 (Melliès and Zeilberger [8]). A context-free grammar of morphisms in a category C is a
morphism of multigraphs φ : G → |W C|, where G is finite, and a start symbol S in G. The language
of the grammar is the image of the set of multimorphisms F▽G(;S) in the free multicategory over
G under the multifunctor F▽φ, which by Definition 1 is a set of morphisms in C.

Context-free grammars over a monoidal category. For categories equipped with a monoidal
structure, it is natural to consider more general kinds of holes than permitted by the spliced arrows
construction, as illustrated in Figure 1. We call these more general morphisms with holes diagram
contexts. Diagram contexts assemble into a symmetric multicategory.

Figure 1: (Left) A spliced morphism is a tuple of morphisms. (Right) In a monoidal category we
may have more general holes, which do not split a morphism into disjoint pieces.

∗This extended abstract is based on the preprint Context-Free Languages of String Diagrams [2].
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Definition 3. The symmetric multicategory of diagram contexts P over a monoidal category P,
has multimorphisms given by derivable sequents in the following type theory, where X,Y, Z,Xi, Yi

are objects of P and f : X1 ⊗ ...⊗Xn → Y1 ⊗ ....⊗ Ym is a morphism of P.

⊢ id : XX ⊢ f : X1,...,Xn

Y 1,...,Ym
x : XY ⊢ x : XY

Γ ⊢ t1 : XY ∆ ⊢ t2 : YZ
Shuf(Γ;∆) ⊢ t1 # t2 : XZ

Γ ⊢ t1 : X1
Y 1

∆ ⊢ t2 : X2
Y 2

Shuf(Γ;∆) ⊢ t1 ⊗ t2 : X1++X2
Y 1++Y 2

We consider terms up to α-equivalence and we impose the following equations over the terms when-
ever they are constructed over the same context: (t1 # t2) # t3 = t1 #(t2 # t3); t # id = t; t1 ⊗(t2 ⊗ t3) =
(t1 ⊗ t2) ⊗ t3; (t1 # t2) ⊗ (t3 # t4) = (t1 ⊗ t3) # (t2 ⊗ t4).

We can now replace spliced arrows over a category in Definition 2 by diagram contexts in a monoidal
category, to obtain a notion of context-free grammar of morphisms in a monoidal category. We
also consider morphisms of symmetric multigraphs, as holes in a diagram context have no canonical
ordering.

Definition 4. A context-free monoidal grammar over a strict monoidal category (C,⊗, I) is a
morphism of symmetric multigraphs Ψ : G → | C |, into the underlying multigraph of diagram
contexts in C, where G is finite, and a start symbol SX,Y ∈ Ψ−1(XY ). The language of the grammar
is a set of morphisms in C(X;Y ), defined analogously to Definition 2.

Context-free monoidal grammars admit a convenient diagrammatic presentation using string dia-
grams for monoidal categories. For example, given a multimorphism r ∈ G(A1, A2;R) with image
a : X1

Y1
, b : X2

Y2
⊢ f # a ⊗ b # g : XY ∈ | C |(X1

Y1
,X2
Y2
;XY ), we draw the following:

X YR
A1

A2
X Yf g

X1

X2

Y1

Y2

Example 1. Context-free tree grammars. Context-free tree grammars [6, 10] are equivalent
to context-free monoidal grammars over the free cartesian monoidal category on a signature of
terminals (e.g. Figure 2).

Example 2. Hypergraph grammars. Hyperedge-replacement (HR) grammars are a kind of
context-free graph grammar [5]. Hypergraphs are the morphisms of hypergraph monoidal categories
[9]. Generators in a monoidal signature are directed hyperedges, and the extra structure in a hy-
pergraph category amounts to a combinatorial encoding of patterns of wiring. Let Γ be a monoidal
signature of terminal hyperedges, G a finite multigraph of non-terminals, and S ∈ G a start sym-
bol. Then context-free monoidal grammars over the free hypergraph category Hyp[Γ] are exactly
hyperedge replacement grammars over Γ.

S A
x

x
A

A
f A f

x

x f
f

x

x f
f

x

=

Figure 2: Example of a context-free tree grammar as a monoidal grammar. The string diagrams at
the bottom are equal in the free cartesian category over the terminals.
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Optical contour of a multicategory. An important contribution of Melliès and Zeilberger is
their exhibition of a left adjoint to the formation of spliced arrows in a category (Definition 1);
the contour of a multicategory [8, Section 3.2]. This adjunction is a key tool in their generalized
Chomsky-Schützenberger theorem. A similar adjunction has been introduced by the Earnshaw,
Hefford and Román between produoidal categories and monoidal categories [3]. Here, we introduce
a version of the latter, between the optical contour of a multicategory and raw optics in a monoidal
category. A raw optic is a tuple of morphisms obtained by cutting a diagram context into a tuple.
Definition 5. The multicategory of raw optics over a strict monoidal category C, denoted ROpt[C],
is defined to have, as objects, pairs A

B of objects of C. Its multimorphisms ROpt[C](A1
B1
, ...,An

Bn
; ST) are

∑

Mi,Ni∈C
C(S;M1⊗A1⊗N1)×

n−1∏

i=1
C(Mi⊗Bi⊗Ni;Mi+1⊗Ai+1⊗Ni+1)× C(Mn⊗Bn⊗Nn;T ).

As a special case, ROpt[C](; ST) := C(S;T ). Identities are given by pairs (idA, idB), and composition
by splicing pieces together.
Note that raw optics are not spliced arrows in the sense of Melliès and Zeilberger: the objects Mi, Ni

must “match” in adjacent pieces. Raw optics has a left adjoint, the optical contour. This is similar
to the contour operation introduced by Melliès and Zeilberger but with additional objects Mi, Ni,
introduced to keep track of strings that surround holes. This gives rise to a strict monoidal category.
Theorem 1. Optical contour is left adjoint to raw optics: (C ⊣ ROpt) : MonCat → MultiCat.

A monoidal representation theorem. The Chomsky-Schützenberger representation theorem
says that every context-free language can be obtained as the image under a homomorphism of
the intersection of a Dyck language and a regular language [1]. Melliès and Zeilberger [7] use
their splicing-contour adjunction to give a novel proof of this theorem for context-free languages in
categories. The role of the Dyck language is taken over by contours of derivations.

Following recent work by Sobociński and the first author on regular languages of string diagrams
[4], we investigate the representation theorem for context-free languages of string diagrams. In this
case, the optical contour of a grammar is already a regular language of string diagrams, and this is
sufficient to reconstruct the original language, with the help of a monoidal functor.
Theorem 2. Every context-free language of string diagrams is the image under a monoidal functor
of a regular language of string diagrams.
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1 Introduction
Lower bounds. Complexity theory has traditionally been concerned with proving separation results.
Among the numerous open separation problems lies the much advertised Ptime vs. NPtime problem of
showing that some problems considered hard to solve but efficient to verify do not have a polynomial time
algorithm solving them.

Proving that two classes B ⊂ A are not equal can be reduced to finding lower bounds for problems in A:
by proving that certain problems cannot be solved with less than certain resources on a specific model of
computation, one can show that two classes are not equal. Conversely, proving a separation result B ⊊ A
provides a lower bound for the problems that are A-complete [8] – i.e. problems that are in some way universal
for the class A.

Alas, the proven lower bound results are very few, and most separation problems remain as generally
accepted conjectures. For instance, a proof that the class of non-deterministic exponential problems is not
included in what is thought of as a very small class of circuits was not achieved until very recently [29].

The failure of most techniques of proof has been studied in itself, which lead to proofs of negative results
commonly called barriers. Altogether, these results show that all proof methods we know are ineffective with
respect to proving interesting lower bounds. Indeed, there are three barriers: relativisation [6], natural proofs
[19] and algebrization [1], and every known proof method hits at least one of them. This shows the need for
new methods1. However, to this day, only one research program aimed at proving new separation results is
commonly believed to have the ability to bypass all barriers: Mulmuley and Sohoni’s Geometric Complexity
Theory (gct) program [17].

Geometric Complexity Theory is widely considered to be a promising research program that might
lead to interesting results. It is also widely believed to necessitate new and extremely sophisticated pieces of
mathematics in order to achieve its goal. The research program aims to prove the Ptime ̸= NPtime lower
bound by showing that certain algebraic surfaces (representing the permanent and the discriminant, which
are believed [28] to have different complexity if Ptime ̸= NPtime ) cannot be embedded one into the other.
Although this program has lead to interesting developments as far as pure mathematics is concerned, it
has not enhanced our understanding of complexity lower bounds for the time being (actually, according to
Mulmuley himself, such understanding will not be achieved in our lifetimes [12]). Recently, some negative
results [15] have closed the easiest path towards it promised by gct.

The gct program was inspired, according to its creators, by a lower bound result obtained by Mulmuley
[16]. Specifically, it was proved that the maxflow problem (deciding whether a certain quantity can flow
from a source to a target in a weighted graph) is not solvable efficiently in a specific parallel model (the
pram without bit operations). The maxflow problem is quite interesting as it is known to be in Ptime (by

1In the words of S. Aaronson and A. Wigderson [1], “We speculate that going beyond this limit [algebrization] will require
fundamentally new methods.”
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reduction to linear programming, or the Ford-Fulkerson algorithm [11]), but there are no known efficient
parallel algorithm solving it. This lower bound proof, despite being the main inspiration of the well-known
gct research program, remains seldom cited and has not led to variations applied to other problems. At first
sight it relies a lot on algebraic geometric techniques and results, such as the Milnor-Thom theorem2.

Dynamic Semantics The geometry of interaction program was proposed by Girard [13] shortly after
the inception of linear logic. In opposition to traditional denotational semantics – e.g. domains –, the goi
program aims at giving an account of the proofs and programs which also interprets their dynamical features,
i.e. cut-elimination/execution. This program is well-suited for tackling problems involving computational
complexity, and indeed, geometry of interaction’s first model was used to prove the optimality of Lamping’s
reduction in λ-calculus [14]. More recently, a series of characterisations of complexity classes were obtained
using goi techniques [4, 5, 2, 3].

Among the most recent and full-fledged embodiement of this program lie the second author’s Interaction
Graphs models [20, 22, 23, 24]. These models, in which proofs/programs are interpreted as graphings –
generalisations of dynamical systems –, encompass all previous goi models introduced by Girard [24]. In
particular, Interaction Graphs allow for modelling quantitative features of programs/proofs [23].

2 Results
Computation models as graphings. The present work reports on the first investigations into how the
interpretation of programs as graphings could lead to separation techniques, by rephrasing two well-known
lower bound proofs, and strenghtening one of them.

The basic intuitions here can be summarised by the following slogan: "Computation, as a dynamical
process, can be modelled as a dynamical system". Of course, the above affirmation cannot be true of all
computational processes; for instance the traditional notion of dynamical system is deterministic. In practice,
one works with a generalisation of dynamical systems named graphings; introduced as part of a family of
models of linear logic, graphings model non-deterministic and probabilistic computation.

To do so, we consider that a computation model is given by a set of generators (that correspond to
computation principles) and its actions on a space (representing the configuration space). So, in other words,
we define a computation model as an action of a monoid (presented by its generators and relations) on a
space α : M ↷ X. A program in such a model of computation is then viewed as a graph, whose vertices are
subspaces of the configuration space and edges are generators of the monoid: in this way, both the partiality
of certain operations and branching is allowed.

Entropy We fix an action α : M ↷ X for the following discussion. One important aspect of the
representation of abstract programs as graphings is that restrictions of graphings correspond to known notions
from mathematics. In a very natural way, a deterministic α-graphing defines a partial dynamical system.
Conversely, a partial dynamical system whose graph is contained in the measured preorder {(x, y) ∈ X2 |
∃m ∈ M,α(m)(x) = y} [21] can be associated to an α-graphing.

The study of deterministic models of computations can thus profit from the methods of the theory of
dynamical systems. In particular, the methods employed in this paper relate to the classical notion of
topological entropy. The topological entropy of a dynamical system is a value representing the average
exponential growth rate of the number of orbit segments distinguishable with a finite (but arbitrarily fine)
precision. The definition is based on the notion of open covers: for each finite open cover C, one can compute
the entropy of a map w.r.t. C. As we are considering graphings and those correspond to partial maps, we
explain how the techniques adapt to this more general setting and define the entropy h(G, C) of a graphing G
w.r.t. a cover C.

2Let us here notice that, even though this is not mentionned by Mulmuley, the Milnor-Thom theorem was already used to
prove lower bounds, c.f. papers by Dobkin and Lipton [10], Steele and Yao [27], Ben-Or [7], Cucker [9] and references therein.
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The overall techniques related to entropy provide a much clearer picture of the techniques. In particular,
the definition of entropic co-trees [18, Definition 37] are quite natural from this point of view and clarifies the
methods employed by e.g. Ben-Or and Mulmuley.

Ben-Or’s proof One lower bounds result related to Mulmuley’s techniques is the bounds obtained by
Steele and Yao [27] on Algebraic Decision Trees. Algebraic decision trees are defined as finite ternary trees
describing a program deciding a subset of Rn: each node verifies whether a chosen polynomial, say P , takes
a positive, negative, or null value at the point considered. A d-th order algebraic decision tree is an algebraic
decision tree in which all polynomials are of degree bounded by d.

In a very natural manner, an algebraic decision tree can be represented as an ι-graphings, when ι is the
trivial action on the space Rn. We use entropy to provide a bound on the number of connected components
of subsets decided by ι-graphings. These bounds are obtained by combining a bound in terms of entropy and
a variant of the Milnor-Thom theorem due to Ben-Or.

Theorem 1 (Theorem 28 [18]). Let T be a d-th order algebraic decision tree deciding a subset W ⊆ Rn. The
number of connected components of W is bounded by 2hd(2d− 1)n+h−1, where h is the height of T .

This result of Steele and Yao adapts in a straightforward manner to a notion of algebraic computation
trees describing the construction of the polynomials to be tested by means of multiplications and additions of
the coordinates. The authors remarked this result uses techniques quite similar to that of Mulmuley’s lower
bounds for the model of prams without bit operations. It is also strongly similar to the techniques used by
Cucker in proving that NCR ̸= PtimeR [9].

However, a refinement of Steele and Yao’s method was quickly obtained by Ben-Or so as to obtain a
similar result for an extended notion of algebraic computation trees allowing for computing divisions and
taking square roots. Adapting Ben-Or techniques within the framework of graphings, we then apply this
refined approach to Mulmuley’s framework, leading to a strengthened lower bounds result.

The main result Using Ben-Or’s technique to handle operations such as division and square root within
prams over integers, we improve over Mulmuley’s proof. By considering that the length of an input is the
minimal length of a binary word representing it, we get a realistic cost model for the prams over integers, for
which we can prove:

Theorem 63. Let G be a pram without bit operations with 2O((logN)c) processors, where N is the length of
the inputs and c any positive integer. Then G does not decide maxflow in O((logN)c) steps.

If NCZ denotes the class of decision problems decided by a pram over integers in time and number of
processors polylogarithmic in the length of the inputs, this proves:

NCZ ̸= Ptime

Conclusion This work not only provides a strengthened lower bound results, but shows how the semantic
techniques based on abstract models of computation and graphings can shed new light on some lower bound
techniques. In particular, it establishes some relationship between the lower bounds and the notion of entropy
which could potentially become deeper and provide new insights and finer techniques.

Showing that the interpretation of programs as graphings can translate, and even refine, such strong lower
bounds results is also important from another perspective. Indeed, the techniques of Ben-Or and Mulmuley
(as well as other results of e.g. Cucker [9], Yao [30]) seem at first sight restricted to algebraic models of
computation due to their use of the Milnor-Thom theorem which holds only for real semi-algebraic sets.
However, the second author’s characterisations of Boolean complexity classes in terms of graphings acting
on algebraic spaces [25] opens the possibility of using such algebraic methods to provide lower bounds for
boolean models of computation.

3
21



References
[1] S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. ACM Trans. Comput.

Theory, 1(1):2:1–2:54, Feb. 2009.

[2] C. Aubert, M. Bagnol, P. Pistone, and T. Seiller. Logic programming and logarithmic space. In APLAS,
2014.

[3] C. Aubert, M. Bagnol, and T. Seiller. Unary resolution: Characterizing ptime. In FOSSACS, 2016.

[4] C. Aubert and T. Seiller. Characterizing co-nl by a group action. Mathematical Structures in Computer
Science, 26:606–638, 2016.

[5] C. Aubert and T. Seiller. Logarithmic space and permutations. Information and Computation, 248:2–21,
2016.

[6] T. Baker, J. Gill, and R. Solovay. Relativizations of the p = np question. SIAM Journal on Computing,
4(4):431–442, 1975.

[7] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, STOC ’83, pages 80–86, New York, NY, USA, 1983. ACM.

[8] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM Symposium on
Theory of Computing, 1971.

[9] F. Cucker. Pr ̸= NCr. Journal of Complexity, 8(3):230 – 238, 1992.

[10] D. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM Journal on Computing,
5(2):181–186, 1976.

[11] L. R. Ford and D. R. Fulkerson. A simple algorithm for finding maximal network flows and an application
to the hitchcock problem. Canadian Journal of Mathematics, pages 210–218, 1957.

[12] L. Fortnow. The status of the p versus np problem. Commun. ACM, 52(9):78–86, Sept. 2009.

[13] J.-Y. Girard. Towards a Geometry of Interaction. Contemporary Mathematics, 92:69–108, 1989.

[14] G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In Proceedings of
the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92,
pages 15–26, New York, NY, USA, 1992. ACM.

[15] C. Ikenmeyer and G. Panova. Rectangular kronecker coefficients and plethysms in geometric complexity
theory. Advances in Mathematics, 319:40 – 66, 2017.

[16] K. Mulmuley. Lower bounds in a parallel model without bit operations. SIAM J. Comput., 28(4):1460–
1509, 1999.

[17] K. D. Mulmuley. The gct program toward the p vs. np problem. Commun. ACM, 55(6):98–107, June
2012.

[18] L. Pellissier and T. Seiller. Prams over integers do not compute maxflow efficiently. Submitted, 2018.

[19] A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24 –
35, 1997.

[20] T. Seiller. Interaction graphs: Multiplicatives. Annals of Pure and Applied Logic, 163, 2012.

[21] T. Seiller. Towards a Complexity-through-Realizability theory. http://arxiv.org/pdf/1502.01257, 2015.

4
22



[22] T. Seiller. Interaction graphs: Additives. Annals of Pure and Applied Logic, 167, 2016.

[23] T. Seiller. Interaction graphs: Full linear logic. In IEEE/ACM Logic in Computer Science (LICS), 2016.

[24] T. Seiller. Interaction graphs: Graphings. Annals of Pure and Applied Logic, 168(2):278–320, 2017.

[25] T. Seiller. Interaction graphs: Nondeterministic automata. ACM Transaction in Computational Logic,
19(3), 2018.

[26] T. Seiller, L. Pellissier, and U. Léchine. Unifying algebraic lower bounds, semantically. under revision
for publication in Information and Computation, 2024.

[27] J. M. Steele and A. Yao. Lower bounds for algebraic decision trees. Journal of Algorithms, 3:1–8, 1982.

[28] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189 –
201, 1979.

[29] R. Williams. Nonuniform acc circuit lower bounds. J. ACM, 61(1):2:1–2:32, Jan. 2014.

[30] A. C.-C. Yao. Decision tree complexity and betti numbers. Journal of Computer and System Sciences,
55(1):36 – 43, 1997.

5
23



Predicativism, Universality and Low-Complexity

Computation

Amirhossein Akbar Tabatabai

Institute of Mathematics, Czech Academy of Sciences
amir.akbar@gmail.com

A function is primitive recursive iff it is representable by a map on the parameterized initial
FN-algebra of any cartesian category (if it exists), where FN(X) = 1+X. In this talk, following
the philosophy of predicativism, we weaken the definition of a parameterized initial F -algebra
to introduce a new notion called a predicative F -scheme, for any endofunctor F . Then, we show
that the predicative FN-scheme (resp. predicative FW-scheme, where FW(X) = 1 + X + X)
naturally captures the class of all linear space (resp. polynomial time) computable functions as
its all and only representable functions. In the rest of this extended abstract, we will present
the definitions of predicative F -schemes and representability to make the above points more
formal.

First, we need to recall some basic definitions. Let C be a cartesian category (i.e., with all
finite products), F : C → C be a functor and X be an object in C. By an F -algebra in C with
parameters in X, we mean the tuple A = (X,A, a), where a : X × F (A) → A is a map in C.
The object A is called the carrier of A and is denoted by |A|. When X = 1, an F -algebra
with parameters in X is simply called an F -algebra. For any two F -algebras A = (X,A, a)
and B = (X,B, b) in C with parameters in X, by an F -homomorphism, we mean a C-map
f : A → B such that the following diagram commutes:

X × F (A) A

X × F (B) B

f

a

b

idX×F (f)

It is clear that F -algebras in C with parameters in X together with F -homomorphisms form
a category denoted by AlgF

X(C). Moreover, the assignment | − | : AlgF
X(C) → C mapping an

F -algebra with parameters in X to its carrier and an F -homomorphism to itself is a functor.
Also, note that any g : X → Y in C induces a canonical functor g∗ : AlgF

Y (C) → AlgF
X(C).

Definition 1. Let E be a cartesian category, D be its (not necessarily full) cartesian subcat-
egory, i : D → E be the inclusion functor preserving all finite products, and F : E → E be a
functor whose restriction to D lands in D itself. An object I in E is called the F -scheme of
D in E , if for any X ∈ D, the object X × I is the limit of the diagram i| − | : AlgF

X(D) → E
via the cone ⟨rX,A⟩A∈AlgF

X(D) and for any D-map f : X → Y and any F -algebra A in D with
parameters in Y , the following diagram commutes:

I ×X

I × Y |A|rY,A

idI×f
rX,f∗A
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The F -scheme of D in E is meant to formalize the common scheme of all F -algebras of D
(with parameters) inside the possibly greater category E . Using the universality of the limit,
one can easily show that there is a canonical F -algebra structure aI : F (I) → I on I, whose
composition with the projection provides an F -algebra structure on I ×X with parameters in
X. It is also easy to see that this algebraic structure makes all rX,A’s into F -homomorphisms.

In the special case when E = D, the F -scheme of D in D is nothing but the initial F -algebra:

Theorem 2. Let D be a finitely complete category. If I is the F -scheme of D in D, then
the F -algebra aI : F (I) → I is the parameterized initial F -algebra in D. Conversely, if A
is the parameterized initial F -algebra in D, then the object |A| together with its unique F -
homomorphisms into the F -algebras of D (with parameters) is the F -scheme of D in D.

In the general situation when E is different from D, we need to add an additional prop-
erty, called the approximability, to gain a more well-behaved F -scheme. Roughly speaking,
although the limit of the diagram i| − | : AlgF

X(D) → E may not belong to D, we want it to
be approximable by the objects inside the smaller category D. More formally, the category
AlgF

X(D) is called approximable iff there is a directed family {Sj}j∈J of classes of morphisms
of D (not necessarily closed under composition) such that it covers the whole Morph(D) and
the restriction of AlgF

X(D) to Sj has an initial element, for any j ∈ J . Unfortunately, the fully
formal definition of approximability is beyond the scope of this short abstract. The reason is
some subtleties in the definitions of the restriction, the initial element and the compatibility in
the parameter object X, all because the Sj ’s are not necessarily closed under the composition.

Having approximability defined, the F -scheme of D in E is called predicative if AlgF
X(D) is

approximable.
Now, we turn to representability. Let N = (N, s, 0) and W = (W, s0, s1, ϵ) be the usual

algebras of natural numbers and binary strings, where s(n) = n + 1, s0(w) = w0, s1(w) = w1
and ϵ is the empty string. In the rest, let us assume that D and E are both cartesian and
cocartesian categories, i : D → E preserves these structures and FN : E → E and FW : E → E
be the functors defined by FN(X) = 1+X and FW(X) = 1+X+X. It is possible to represent
any element n ∈ N (resp. w ∈ W) as a map in HomE(1, I), if I is the FN-scheme (resp. FW-
scheme) of D in E . Denote this canonical representation by n̄ (resp. w̄). Similarly, we say that
an E-map f : Ik → I represents a function φ : Nk → N if the following commutes:

1

Ik I
f

⟨n̄1,...,n̄k⟩ φ(n1,...,nk)

for any (n1, . . . , nk) ∈ Nk. One can have a similar definition replacing N by W. Now, we are
finally ready to present our main result:

Theorem 3. (i) A function φ : Nk → N is linear space computable iff it is representable as
a map on the predicative FN-scheme of D in E, for any D and E.

(ii) A function φ : Wk → W is polynomial time computable iff it is representable as a map on
the predicative FW-scheme of D in E, for any D and E.
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What is special about the 13th Permutoassociahedron?

(Congruential functions as canonical isomorphisms)

Peter M. Hines – University of York

Although undecidability in mathematics is rightly attributed to the paradigm-shattering results of K. Gödel, ex-
actly how widespread it is was brought home by the work of John Conway on congruential functions. These simple
functions on the natural numbers — defined piece-wise linearly on modulo classes — are key to his demonstration
of undecidability in elementary arithmetic [3, 4]. This was based on exhibiting computational universality of simple
iterative problems on congruential functions via an encoding of Universal Register Machines, and then an appeal to
the halting problem for Turing machines & equivalent systems.

The deceptively simple, but ultimately undecidable, problems considered by Conway were based on the orbits of
natural numbers under some congruential function Γ : N → N. We consider three distinct classes of functions :

pr-Fin All orbits are (provably) finite :
∥∥{ΓK(n)}K∈N

∥∥ < ∞ for all natural numbers n ∈ N.

pr-Inf All orbits are (provably) either fixed points Γ(n) = n or infinite
∥∥{ΓK(n)}K∈N

∥∥ = ∞, for all n ∈ N.

un-Dec It is (in general) undecidable whether the orbit {ΓK(n)}K∈N of a given n ∈ N is finite or infinite.

Although Turing-completeness is well-studied categorically (usually via interpretations of logic or lambda calculus),
Conway’s congruential functions remain relatively little-studied for their categorical properties. The purpose of this
talk is to demonstrate that a significant class – including many examples fundamental to numerous different areas of
mathematics & theoretical computer science – are rightly seen as canonical coherence isomorphisms.

Our starting point is exact covering systems – a notion attributed to P. Erdös. These are pairwise-disjoint sets of
modulo classes whose union is the whole of the natural numbers1. Number-theoretically, there are several methods of
‘producing new covering systems from old’. We study the notion of “equally splitting a congruence class”, which we
demonstrate gives a somewhat disguised form of operadic composition on exact covering systems. Starting with the
trivial exact covering (i.e. the set {N} itself), this procedure gives what are known as the “natural open covers”, which
we demonstrate form an operad isomorphic to the formal operad of rooted planar trees.

This then allows us to label associahedra with natural covering systems in a unique manner.

As a first step towards a categorical interpretation, we demonstrate how to build functors from exact covering sys-
tems, motivated by, but extending, constructions from J.-Y. Girard’s Geometry of Interaction series of papers [5, 6, 7].
The functors derived from ‘equally splitting’ N itself form a “family of unbiased tensors” in the sense of [13] on a
monoid of maps on the natural numbers. The natural covering systems then correspond to distinct bracketings of these
unbiased tensors.

It is then almost trivial to demonstrate that the three classes of congruential functions determined by iterative
properties (pr-Fin, pr-Inf and un-Dec) are closed under this family of unbiased tensors.

In a neat coincidence of notation between different fields, we derive natural isomorphisms from natural covering
systems in an obvious manner. This gives a posetal functor category & so a notion of coherence for the above family of
unbiased tensors. The components of the natural isomorphisms associated with this notion of coherence are not only
easy to write down from their description as pairs of facets of some associahedron, but are precisely a distinguished
set of congruential functions. A natural question is then how, or whether, we may characterise the iterative properties

1Algebraically, these may be thought of as disjoint basic open covers of the monoid (N,+), with respect to the profinite topology.
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of thses canonical isomorphisms.

We study distinguished classes of these canonical isomorphisms, based on three aspects :

1. Their location on the associahedra,

2. Their previous appearance in other areas of mathematics & computer science,

3. Their behaviour under the iterative problems studied by Conway.

Our overall hypothesis is that these three aspects are closely related. Although this is a wide-ranging and indeed
vaguely defined conjecture, we consider three classes of canonical isomorphisms for which this appears to hold true :

1. (Non-commutative) Prime Factorisations, and pr-Fin.
A common view in the field of operads (e.g. [14]) is that the ‘usual arithmetic’ should be thought of as the
commutative quotient of a non-commutative theory. We consider non-commutative analogues of multiplication
and prime factorisation based on rooted planar trees, together with the corresponding natural isomorphisms /
congruential functions between them. We demonstrate that these give congruential functions based on the radix-
reversal permutations familiar from the Cooley-Tukey / Gauss theory of Fast Fourier Transforms. Not only are
these canonical isomorphisms all in the class pr-Fin of functions with provably finite orbits, but they are also
dual in a certain sense to those arising from Conway’s FRACTRAN universal programming language.

2. Vertices of Associahedra, and pr-Inf.
A distinguished class of mappings is given by those between vertices of associahedra. The connection between
1-skeleta of associahedra and MacLane’s theory of coherence for associativity is of course well-known : from
M. Kapranov, “Given any n objects of a monoidal category, the associativity isomorphisms give a commuting
diagram whose shape is the 1-skeleton of Kn” – [11]. In our setting, we demonstrate that these give an isomorphic
copy of Richard Thompson’s group F as a group of congruential functions that have a very close connection with
the class pr-Inf where orbits are either infinite, or fixed points.

3. Boundary Maps, and un-Dec.
As we are considering unbiased tensors (i.e. one of each arity) with a notion of coherence, in the nth associahedron
Kn we may consider canonical isomorphisms between arbitrary facets – not simply those of the same dimension.
Of particular interest are those between some facet, and the facets making up its boundary. We demonstrate
that for every associahedron Kn (where n ≥ 3), and every dimension 0 < x ≤ n−2, there exists an x-dimensional
facet G and an x− 1 dimension facet H on its boundary, where the canonical isomorphisms between G and H is
precisely the congruential function described in [12] as claimed by Conway as his motivation for undecidability
in arithmetic, and widely conjectured — following a probabilistic argument of Conway [4] — to be undecidable
in any system powerful enough to express the problem, and hence in the un-Dec class.

If time permits, we will not only consider the categorical status of functions used in iterative arguments, but the
categorical nature of the iterative process itself. This will be in terms of the particle-style categorical trace as a general
model of iterative processes [10, 1, 8, 2, 9]. We will exhibit a particle-style trace on an inverse monoid of (partial)
congruential functions equipped with a coherent family of unbiased tensors — providing a clear link between simple
iterative problems, and the categorical structures used in models of computationally universal logics and lambda
calculii.
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