
Structure Meets Power Workshop

(Contributed Talks)

4 July 2022

https://www.cst.cam.ac.uk/conference/structure-meets-power-2022

1

https://www.cst.cam.ac.uk/conference/structure-meets-power-2022

Contents

Adam Ó Conghaile: A sheaf-theoretic approach to (P)CSPs 3

Amar Hadzihasanovic: Data structures for topologically sound
higher-dimensional diagram rewriting 6

Damiano Mazza: A Categorical Approach to Descriptive Com-
plexity Theory 9

Gabriel Goren: Path Predicate Modal Logic and its Comonadic
Semantics 12

Jade Master: How to Compose Shortest Paths 15

Tim Seppelt: Recent Advances in Homomorphism Indistinguisha-
bility 18

Peter Hines: Coherence, conjectures, and congruential functions 21

Wei-Lin Wu: Query Algorithms Based on Homomorphism Counts 24

Jakub Opršal: Datalog reductions between constraint satisfaction
problems 27

Sam van Gool: Proaperiodic monoids via prime models 30

Paul-André Melliès: Parsing as a lifting problem and the Chomsky-
Schutzenberger representation theorem 33

Pawel Sobocinski: Monoidal Width 35

Vincent Moreau: From profinite words to profinite lambda-terms 38

Siddharth Bhaskar: Indexed complexity classes 41

Gabriel Istrate: Compositionality and Proof Complexity 44

2

A sheaf-theoretic approach to (P)CSPs

an extended abstract

Adam Ó Conghaile joint work with
Samson Abramsky and Anuj Dawar

May 28, 2022

1 Introduction

The Structure and Power programme has introduced compelling compositional
semantics for many approximations to homomorphism and isomorphism on fi-
nite structures which occur naturally in logic and computer science. This is
largely done by the construction of game comonads such as those of Abramsky,
Dawar and Wang [2], Abramsky and Shah [4], Abramsky and Marsden [3], and
Montacute and Shah [7]. These all create formal links between structural de-
compositions which appear as coalgebras of the comonad and expressive power
in some logical fragment which controls how the Kleilsi morphisms and isomor-
phisms approximate homomorphism and isomorphism of relational structures.

While these comonads cover a wide range of decompositions and logical frag-
ments, from an algorithmic perspective, the homomorphism and isomorphism
approximations related to the known comonads are relatively weak. Indeed,
of those mentioned, the strongest is the pebbling comonad whose Kleilsi mor-
phisms and isomorphisms correspond respectively to the success of the k-local
consistency and Weisfeiler-Leman algorithms. These are both long known to
be unable to capture all efficiently computable instances of CSP and structure
isomorphism [5]. Attempts to make game comonads which go beyond this have
presented other difficulties. The Hella comonad of Ó Conghaile and Dawar, for
example, captures a fragment of logic extended by quantifiers which are not, in
general, computable. A game comonad for Dawar and Holm’s Invertible Maps
equivalance [6] has long been sought but not found.

In this talk, we review the alternative presheaf-theoretic semantics for the
pebble games which in as-yet-unpublished work by Abramsky, Ó Conghaile,
and Dawar [1, 8, 9] and explore its connections to stronger algorithms for CSP
and structure isomorphism and to the theory of promise constraint satisfaction
problems.

1

3

2 Presheaves for constraint satisfaction and struc-
ture isomorphism

Informally, a presheaf is an object which organises local “behaviours” of some
space X where the “local” contexts are given by some cover C of X. Global
behaviours of X can then be constructed as “global sections” of the presheaf.

In [9], we see that any finite relational structure X can be made into such a
space in a natural way using a relational cover C, which is defined as a collection
of substructures of X whose union is X. This allows the definition of set-valued
presheaves HC

A and ICA which record the local (as defined in C) solutions to the
homomorphism and isomorphism problems between A and X.

Fact 1. For a structure X with relational cover C and a structure A of the
same signature, the presheaf HC

A (resp. ICA) has a global section if and only if
X → A (resp. X ∼= A).

Computing whether one of these presheaves has a global section is clearly
just as difficult as the original constraint satisfaction problem so we now look at
obstructions to global sections on presheaves which will give rise to efficiently
computable approximations of these problems.

Given a set-valued presheaf F and a semiring S, the functor SF which com-
poses F with the free S-semimodule functor is also a presheaf now valued in
S-semimodules. We have the following useful fact

Fact 2. For a semiring S and a presheaf F then

1. if SF has no global section then F has no global section, and

2. given a local section s of F , if SF has no global section extending s then
F has no global section extending s.

When F is HC
A this gives us three tests approximating homomorphism. Test

1 checks if SF has a global section, Test 2 checks for given s if it can be extended
to a global section of SF and Test 2∗ repeatedly removes sections which fail
Test 2 and succeeds if this process stabilises before removing all sections. When
S admits efficient solving of linear equations then these tests can be done in
PTIME in the size of C. We will consider the semirings (B,max), (Q≥0,+)
and (Z,+) In the next two sections we explore what these tests correspond to
for two important choices of cover C.

3 Presheaves and k-consistency

Taking the relational cover of X to be the cover X≤k of substructures of X of
size k or less, the most compelling established connection is that Test 1 succeeds
for S = B if and only if the k-consistency algorithm accepts the instance (X,A).
The cohomological k-consistency of [8] is defined to be Test 2∗ of S = Z.

2

4

Test 1 Test 2∗ (singletons) Test 2∗ (all)
B Arc-consistency SAC CAC

Q≥0 BLP SBLP CBLP
Z AIP SAIP CAIP

Table 1: C = C(X)

4 Presheaves and PCSP algorithms

There is another cover where the landscape of algorithms is much more clearly
mapped out. This is the cover of X be a substructure for each related tuple and
each singleton. We call this cover CX and note in Table 1 that this captures
many algorithms studied in the Promise Constraint Satisfaction community.

References

[1] Abramsky, S. Notes on cohomological width and presheaf representations.
Tech. rep., University College London, 2022.

[2] Abramsky, S., Dawar, A., and Wang, P. The pebbling comonad in
finite model theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS) (2017), pp. 1–12.

[3] Abramsky, S., and Marsden, D. Comonadic semantics for guarded
fragments. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021 (2021), IEEE,
pp. 1–13.

[4] Abramsky, S., and Shah, N. Relating structure and power: Comonadic
semantics for computational resources. Journal of Logic and Computation
31, 6 (Aug. 2021), 1390–1428.

[5] Cai, J.-Y., Fürer, M., and Immerman, N. An optimal lower bound on
the number of variables for graph identification. Combinatorica 12, 4 (Dec.
1992), 389–410.

[6] Dawar, A., and Holm, B. Pebble games with algebraic rules. In Au-
tomata, Languages, and Programming (Berlin, Heidelberg, 2012), A. Czu-
maj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, Eds., Springer Berlin
Heidelberg, pp. 251–262.

[7] Montacute, Y., and Shah, N. The pebble-relation comonad in finite
model theory. CoRR abs/2110.08196 (2021).

[8] Ó C., A. Cohomological k-consistency. Tech. rep., Cambridge, 2022.

[9] Ó C., A. Cohomology in constraint satisfaction and structure isomorphism.
Tech. rep., Cambridge, 2022.

3

5

Submitted to:
ACT2022

© A. Hadzihasanovic & D. Kessler

Data structures for topologically sound
higher-dimensional diagram rewriting

Amar Hadzihasanovic
Tallinn University of Technology

& Quantinuum, Compositional Intelligence
amar@cs.ioc.ee

Diana Kessler
Tallinn University of Technology

diana-maria.kessler@taltech.ee

This work looks at the algorithms and complexity theory of higher-dimensional diagram rewriting.
Higher-dimensional rewriting, as emergent from the theory of polygraphs [4] – see [6] for a survey – is
founded on an interpretation of rewrites as directed homotopies. Proofs by diagrammatic rewriting can
be used in the formalisation of homotopical algebra and higher category theory, provided that one has
a topologically sound formal model, where diagrams admit a functorial interpretation as homotopies in
cell complexes.

Beyond the formalisation of mathematics, it is interesting to look at higher-dimensional diagram
rewriting as a model of computation in itself. String diagram rewriting, a form of 3-dimensional rewrit-
ing, is arguably the characteristic computational mechanism of applied category theory. It has been sug-
gested [3] that even “classical” forms of rewriting are more faithfully represented as diagram rewriting:
for example, term rewriting implemented as rewriting in monoidal categories with cartesian structure
explicitates the “hidden costs” of copying and deleting terms.

Our contribution is to describe a computational implementation for diagrammatic sets [7, 8], a combi-
natorial alternative to polygraphs which, unlike them, is topologically sound. This is concretely imple-
mented in a Python library for higher-dimensional diagram rewriting, rewal, for which a first release is
imminent. In addition, we provide a complexity analysis for our implementation, showing that the basic
operations in constructing diagrams and rewrites take (low-degree) polynomial time. This is a necessary
step towards building diagrammatic models of computation with a reasonable cost model.

In its aims and inspiration, our work is closely related to that of Vicary, Bar, Dorn, and others on
quasistrict [2] and later associative [5, 9] n-categories, serving as the foundation of the homotopy.io proof
assistant. However, we claim that our model presents both theoretical advantages (proven topological
soundness, functorial ties to well-established models of higher categories) and computational advantages
(rewrites have better “locality” properties, which is beneficial both in terms of space efficiency and
parallelisability).

The shape of a diagram in a diagrammatic set is encoded by its face poset, recording whether a cell
is located in the boundary of another cell, together with orientation data which specifies whether an
(n−1)-dimensional cell is in the input or output half of the boundary of an n-dimensional cell. We call
the mathematical structure containing these data an oriented graded poset.

To represent an oriented face poset, we linearly order its elements in each dimension, so that each face
is represented by a pair of integers, its dimension and its position. We encode the poset structure via an
adjacency list view of its Hasse diagram, in the form of an array of arrays of pairs of sets of integers,
where the pair of sets at index (n,k) contains the positions of the (n−1)-dimensional input, respectively
output faces of (n,k). This representation of an oriented graded poset (up to isomorphism) is not unique:
any permutation of the linear order on elements in each dimension leads to an equivalent representation.

Sub-diagrams are identified by (downwards) closed subsets of an oriented graded poset. Oriented

6

2 Data structures for topologically sound higher-dimensional diagram rewriting

graded posets support a purely combinatorial definition of the input (α :=−) and output (α :=+) k-di-
mensional boundary of a closed subset U , denoted by ∂ α

n U .
In the theory of diagrammatic sets, shapes of diagrams form an inductively generated class of oriented

graded posets, called regular molecules after Steiner [10]. We say a closed subset of an oriented graded
poset of dimension n is round if, for all k < n, ∂+

k U ∩∂−k U = ∂k−1U .

Regular molecules The class of regular molecules is generated by the following clauses.
• (Point). The terminal oriented graded poset • is a regular molecule.
• (Atom). Let U,V be round regular molecules such that dim(U) = dim(V) and, for all

α ∈ {+,−}, ∂ αU is isomorphic to ∂ αV . Then U ⇒ V is a regular molecule, where U ⇒ V
is the essentially unique oriented graded poset U ⇒V with the property that

1. U ⇒V has a greatest element, and
2. ∂−(U ⇒V) is isomorphic to U , while ∂+(U ⇒V) is isomorphic to V .

• (Paste). Let U,V be regular molecules and k < min(dim(U),dim(V)), such that ∂+
k U is isomor-

phic to ∂−k V . Then the pushout U #k V of the span ∂+
k U ↪→U , ∂+

k U
∼
↪→ ∂−k V ↪→ V is a regular

molecule.
A regular molecule is an atom if it has a greatest element; these are precisely the molecules whose
final generating clause is (Point) or (Atom).

Correspondingly, we implement regular molecules as an inductive subclass of oriented graded posets
with a nullary constructor point and partial binary constructors atom(−,−) and pastek(−,−) for k ∈N.
To implement these constructors, we need to:

1. compute input and output k-boundaries;
2. check if a closed subset is round;
3. determine if two regular molecules are isomorphic;
4. compute the pushout of a span of inclusions.

The first, second, and fourth of these admit straightforward algorithms of low-degree polynomial time
complexity, that do not rely on any special properties of regular molecules.

The third task, however, does not have a straightforward solution. The isomorphism problem gener-
alised to all oriented graded posets is equivalent to the graph isomorphism problem whose best known
algorithm, due to Babai, runs in quasipolynomial time [1]. Our main technical contribution is to provide
a polynomial time algorithm for the isomorphism problem restricted to regular molecules.

Our strategy for solving this isomorphism problem is to use a deterministic traversal algorithm that,
given a regular molecule, outputs a unique ordering of the elements, which depends only on the intrinsic
structure of the oriented graded poset and not on its representation. We can then put a regular molecule in
“canonical form” by reordering elements in each dimension according to the traversal order. Two regular
molecules are then isomorphic if and only if their canonical forms are equal.

For a fixed regular molecule U , let |En| be the number of edges between n and (n− 1)-dimensional
elements in the Hasse diagram of U and |Un| be the number of n-dimensional elements of U . Then,
|Umax| := maxn |Un|, |Emax| := maxn |En|.
Theorem — The traversal algorithm admits an implementation running in time

O
(
|U |2(|Emax| · log |Emax|+ |Umax| · log |Umax|)

)
.

Our last contribution is to provide a type theory DiagSet whose terms live “on top” of our representa-
tion of regular molecules: they are “shapes labelled with variables”. This type theory is a formalisation

7

A. Hadzihasanovic & D. Kessler 3

of our Python implementation, and allows us to prove an adequacy theorem for the intended semantics,
in the form of a contravariant equivalence between the syntactic category of our type theory and a full
subcategory of the category of diagrammatic sets.

The terms of DiagSet have a trivial equational theory, and in this sense they are “noncomputational”:
all the computation, which consists exclusively of computing and matching shapes, happens under the
hood before a term is even created.

This is intended. Rather than a computational theory in itself, DiagSet is intended as a substrate for
computational theories according to the paradigm of higher-dimensional rewriting. A term t : r−⇒ r+

can be seen as a rewrite of the “lower-dimensional” term r− to the term r+, and the extension of t via the
pastek rules establishes how the rewrite can happen in a wider context. In this sense, every well-formed
context in DiagSet contains its own internal computational theory on terms of each dimension.

For now, we have only scratched the surface of the algorithm and complexity theory of diagram rewrit-
ing in higher dimensions. In particular, we have not yet studied the problem of searching for a subdiagram
within another diagram, whose solution is essential to any form of fully automated or assisted diagram
rewriting. We plan to tackle this problem in future work.

References
[1] L. Babai (2016): Graph isomorphism in quasipolynomial time [extended abstract]. In: Proceed-

ings of the forty-eighth annual ACM symposium on Theory of Computing, ACM, pp. 684–697,
doi:10.1145/2897518.2897542. Available at https://doi.org/10.1145%2F2897518.2897542.

[2] K. Bar & J. Vicary (2017): Data structures for quasistrict higher categories. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2017.8005147. Avail-
able at https://doi.org/10.1109%2Flics.2017.8005147.

[3] G. Bonfante & Y. Guiraud (2009): Polygraphic programs and polynomial-time functions. Logical Meth-
ods in Computer Science 5(2), doi:10.2168/lmcs-5(2:14)2009. Available at https://doi.org/10.2168%
2Flmcs-5%282%3A14%292009.

[4] A. Burroni (1993): Higher-dimensional word problems with applications to equational logic. Theoretical
Computer Science 115(1), pp. 43–62, doi:10.1016/0304-3975(93)90054-w. Available at https://doi.
org/10.1016%2F0304-3975%2893%2990054-w.

[5] C. Dorn (2018): Associative n-categories. Ph.D. thesis, University of Oxford.
[6] Y. Guiraud (2019): Rewriting methods in higher algebra. Thèse d’habilitation à diriger des recherches,

Université Paris 7.
[7] A. Hadzihasanovic (2020): Diagrammatic sets and rewriting in weak higher categories. arXiv preprint

arXiv:2007.14505.
[8] A. Hadzihasanovic (2021): The smash product of monoidal theories. In: 2021 36th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics52264.2021.9470575. Available
at https://doi.org/10.1109%2Flics52264.2021.9470575.

[9] D. Reutter & J. Vicary (2019): High-level methods for homotopy construction in associative n-
categories. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE,
doi:10.1109/lics.2019.8785895. Available at https://doi.org/10.1109%2Flics.2019.8785895.

[10] R. Steiner (1993): The algebra of directed complexes. Applied Categorical Structures 1(3), pp. 247–284,
doi:10.1007/bf00873990. Available at https://doi.org/10.1007%2Fbf00873990.

8

A Categorical Approach to Descriptive Complexity Theory

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

Data specifications and complexity. Descriptive complexity [Imm99] teaches us that any
structure that may be given as input to a computer program is a finite structure in the sense
of model theory. More generally, one may consider finite models of first-order theories, up to
isomorphism: for example a binary string is, up to iso, a finite model of the theory Str whose
language contains a binary relation symbol ≤ and a unary relation symbol isOne, and whose
axioms state that ≤ is a total order. “Up to iso” here means that the structures {0 < 1 < 2}
with isOne = {2} and {a < b < c} with isOne = {c} define the same binary string, namely
001.

We said “first-order theory” but we will actually restrict to what we call Boolean theo-
ries, which are multisorted relational (i.e., no function symbols) theories with equality whose
axioms are all of the form ∀~x.ϕ, where ϕ contains no quantifiers except provably unique exis-
tential quantifiers, i.e., of the form ∃y.ψ where the formula ∀y.∀y′.ψ(y) ∧ ψ(y′) ⇒ y = y′ is
provable in the theory.

Introduced by Lawvere, categorical logic [Joh02] posits that logical and categorical struc-
tures come hand in hand: logical theories of a given kind (especially subsystems of first-order
logic) correspond to categorical structures necessary to interpret them.

The categorical structure corresponding to Boolean theories is that of lextensive Boolean
categories [CLW93] (or, henceforth, simply Boolean categories), which are categories with finite
products, disjoint and pullback-stable finite coproducts, and such that the poset of subobjects
of every object is a Boolean algebra. Morphisms between Boolean categories, called logical
functors, are functors preserving finite products and finite coproducts.

The category BoolTh of Boolean theories and their morphisms and the category BoolCat
of Boolean categories and logical functors up to natural iso are related by an adjunction
F [−] a Lang, where Lang : BoolCat → BoolTh associates with a category its internal lan-
guage, whereas F [−] : BoolTh→ BoolCat associates with a theory its syntactic category. Intu-
itively, F [T] is the category presented by the theory T, much like Z[X1, . . . , Xn]/(P1, . . . , Pm)

is the commutative ring presented by n generators and m polynomial equations P1, . . . , Pm ∈
Z[X1, . . . , Xn] (the generators correspond to the sorts and symbols of T, whereas the polyno-
mials to its axioms).

A fundamental observation now is that the category F of finite sets and functions is
Boolean, and finite models of a theory T are in bijection with natural isomorphism classes of
logical functors F [T]→ F . Essentially, this was Lawvere’s starting point for his development
of categorical logic.

We therefore define Bool to be the category whose objects are finite Boolean theories
(meaning with finitely many sorts, relation symbols and axioms) and whose morphisms T→
S are logical functors F [T] → F [S], modulo natural isomorphism. It turns out that F [E],
where E is the empty theory, is equivalent to F , which implies, by what mentioned above,

1

9

that a morphism T → E in Bool is the same thing as a finite model of T (remember that
morphisms are up to iso). Hence, a morphism f : T→ S of Bool induces a function from the
finite models of S to the finite models of T (notice the contravariance): simply take the image
of f via the presheaf Bool(−, E).

The fact that arrows in Bool go in the opposite direction with respect to how models are
transformed suggests that all arrows should be reversed. Let us then define the category
of data specifications as Data := Boolop. When seeing a theory T as a data specification,
i.e., as an object of Data rather than Bool, we will write Spec T. Data is a small category,
with a nice structure: it is itself lextensive and, therefore, for what concerns finite categorical
constructions, it behaves in many respects as a category of “spaces”.

It turns out that a morphism Spec S→ Spec T is, essentially, what is known in descriptive
complexity as a quantifier-free query from the finite models of S to the finite models of T.
As for the finite models of T, they become morphisms Spec E → Spec T in Data, which is
reasonable because Spec E is the terminal object of Data, and therefore these are the “points”
of Spec T, which we will call finite points here.

With this perspective, given a morphism f : T → S of Data and a finite point x : Spec E→
S, we may ask when x factors through f via a finite point y : Spec E → T: this corresponds
to seeing f as a sort of search problem and y as a “solution” for x. We may say that x is in
the finite image of f if it factors through some y as above. We thus find that Data is strongly
related to computability:

Theorem 1 A subset of {0, 1}∗ is recursively enumerable iff it is the finite image of a morphism
X → Spec Str of Data.

Some interesting connections with complexity may also be found. Call a morphism f :
X → Spec S relational if X ∼= Spec T with T being an extension of S with no additional sorts
and f being equal to the obvious projection Spec T → Spec S (dual to the inclusion S → T)
composed with the above iso. Call f Horn if, in addition, every axiom of T is of the form

ϕ ∧ R1(~x1) ∧ · · · ∧ Rn(~xn)⇒ ψ

with ϕ a formula of S, R1, . . . , Rn relation symbols of T which are not of S (the case n = 0 is
allowed) and ψ either a formula of S or of the form S(~y) with S a relation symbol of T not in
S. With these definitions, we have

Theorem 2 A subset of {0, 1}∗ is
1. in NP iff it is the finite image of a relational morphism over Spec Str;
2. in P iff it is the finite image of a Horn morphism over Spec Str.

The interesting fact about Theorem 2 is that it does not use known descriptive characteriza-
tions of P or NP (such as Fagin’s) but, rather, it uses the proof of Theorem 1 and yields those
characterizations as a corollary. A similar characterization holds for NL (non-deterministic
logspace) but its formulation is a bit more technical.

Reductions as pullback and complete problems via Yoneda. Summing up, a morphism
f : T → S of Data may be seen as

• a quantifier-free query from the finite points of T to the finite points of S;
• a recursively enumerable problem on the finite points of S: for any given finite point

x : Spec E → S of S, seen as an instance of the problem, the finite points y of T such
that f ◦ y = x (if any) are solutions to the instance x.

2

10

Combining these two viewpoints, we have that, given morphisms/problems f : X → S and
g : Y → T, a morphism/query r : T → S verifying that the pullback r∗ f of f along r has the
same finite image as g is exactly a quantifier-free reduction of g to f . If, additionally, r∗ f = g,
then r corresponds to a parsimonious reduction [Pap93] (i.e., one that preserves the number of
solutions of each instance).

We mentioned that data specifications are “spaces” of some sort. Intuitively, their points
are (not necessarily finite) models of finite Boolean theories. Presheaves over Data may
therefore be seen as “generalized spaces” modeled on top of data specifications. The no-
tions of finite point and finite image apply basically unchanged: a finite point of a presheaf
X : Bool → Set is simply an element of X(E), and the finite image of a morphism (natural
transformation) f : X → Y is just the set-theoretic image of fE. The notion of (parsimonious)
reduction-as-pullback also makes sense (pullbacks of morphisms of presheaves always exist).

Now, Theorem 2 tells us that, for any data specification S, describing a set of finite points
of S of a certain complexity is the same as giving a morphism over S of a certain form.
Therefore, it may be interesting to look for “classifying spaces” of such morphisms, that is,
an object R such that morphisms on S of the desired form are in bijection with morphism
S → R. Although there may not be a classifying space for NP or P in Data itself, such
classifying spaces exist almost tautologically (thanks to Yoneda) as presheaves:

Theorem 3 There is a morphism of presheaves u : R• → R (resp. v : H• → H) such that, for every
relational (resp. Horn) morphism f : X → S of Data, there exists a unique morphism r f : S → R
(resp. r f : S→ H) such that f is the pullback of u (resp. v) along r f .

In other words u (resp. v) is a “generalized problem specification” such that every NP (resp. P)
problem specification uniquely and parsimoniously quantifier-free-reduces to it. This strong
form of completeness seems to be unachievable with “non-generalized” specifications.

Even more interestingly, u and v actually correspond to well-known complete problems:
• R(E) (resp. H(E)) is in bijection with the set of CNFs (resp. Horn CNFs);
• R•(E) (resp. H•(E)) is in bijection with the set of pairs (ϕ, σ) where ϕ is a CNF (resp.

Horn CNF) and σ is a satisfying assignment for it;
• uE and vE are the functions forgetting the assignment.

Therefore, the finite images of u and v are just Sat and Horn Sat, the prototypical NP-
complete and P-complete problems, respectively. Also, when repeating the construction with
the characterization of NL, we obtain 2-Sat, a well-known NL-complete problem.

Whether this functorial approach is fruitful for descriptive complexity is unclear at present,
this note presents the very surface of a rather large theory, whose development is ongoing.
An interesting aspect is that Boolean categories present many similarities with commutative
rings, so we are working in a context heavily reminiscent of “functorial” algebraic geometry.
These analogies are rather encouraging, but too complex to mention here.

References

[CLW93] Aurelio Carboni, Stephen Lack, and R.F.C. Walters. Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra, 84(2):145–198, 1993.

[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.

[Joh02] Peter T. Johnstone. Sketches of en Elephant. A Topos Theory Compendium. Volume 2. Oxford
University Press, 2002.

[Pap93] Christos H. Papadimitriou. Computational Complexity. Pearsons, 1993.

3

11

Path Predicate Modal Logic and its Comonadic1

Semantics2

Gabriel Goren3

Universidad de Buenos Aires & ICC, Argentina4

The following work stems from an interest in exploring the applicability of the comonadic5

formalism [1] to data-aware logics. These are languages that reason on data-graphs studied in6

Database Theory, both exploring the topology of the structure and manipulating data-values.7

In particular, (in-)equality comparisons allow the expression of the data join, the most8

important construct of a query language. This interest lead us to consider simple fragments9

of CoreDataXPath [4]; in particular, we focused on DataGL, a very simple data-aware logic10

to reason on data-trees, studied in [2] from a proof-theoretical point of view.11

DataGL captures a fragment of CoreDataXPath(↓+), and can be seen as a bi-modal logic12

with the operators ♦= and ♦6=. However, multimodal logic cannot accommodate increasingly13

sophisticated fragments of CoreDataXPath such as those that express tests on intermediate14

steps of a path. This lead us to consider DataGL as a particular case of a more general15

family of logics that we call Path Predicate Modal Logic or PPML which, to the best of our16

knowledge, have not been investigated.17

In this joint work with Santiago Figueira1 we introduce PPML and begin the development18

of its basic theory from the point of view of comonadic semantics.19

Path Predicate Modal Logic. We denote by σ a relational first-order signature with20

finite symbols. We always assume that σ contains a distinguished binary relation R0 which21

will be treated as an accessibility relation, and denote the remaining symbols by R1, . . . , Rm.22

For each i > 0, Ri has arity ri ≥ 1. In any given σ-structure A, we write a ≺ a′ iff RA(a, a′).23

|A| denotes the underlying set of A. We denote by Struct(σ) the category of first-order24

σ-structures, while Struct∗(σ) refers to the category of σ-structures A with a distinguished25

element or basepoint a ∈ A.26

The Path Predicate Modal Logic (PPML) is defined by the grammar

ϕ := ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ♦ϕ | Ri (i ∈ {1, . . . ,m}).

Just like for Basic Modal Logic, the semantics of a formula ϕ of PPML is defined relative to27

a structure A and a specific point a ∈ |A|. However, to evaluate ϕ at a it will be necessary28

to remember previous ‘visited’ points, making it natural to define the semantics with respect29

to a string of points.30

Let N(σ) = max{2, r1, . . . , rm} be the maximum arity of relations in σ. A sliding31

valuation over |A| is a string s ∈ |A|≤N of length at most N . The i-th symbol of s is denoted32

by s(i) and the first k symbols of s by s � k (for k ≤ |s| where |s| is the length of s). The33

concatenation of a symbol a ∈ A and a word w ∈ A∗ is notated a.w. We define the semantics34

of PPML over a σ-structure A and a sliding valuation s as follows:35

A, s |= Ri iff ri ≤ |s| and (s(ri), . . . , s(1)) ∈ RAi .36

A, s |= ♦ϕ iff there is a ∈ A such that (s(1), a) ∈ RA0 and A, (a.(s � n− 1)) |= ϕ.37

The Boolean connectives are defined as usual.38

Finally, we say that A, a |= ϕ iff A, sa |= ϕ where sa is the one letter string (a).39

The positive fragment of PPML, PPML♦, consists of the subset of negation-free formulas.40

We denote by PPMLk and PPML♦
k the fragments of PPML and PPML♦consisting of formulas41

of modal depth ≤ k.42

1 Universidad de Buenos Aires & ICC, Argentina

12

2 Path Predicate Modal Logic and its Comonadic Semantics

DataGL as a semantic restriction of PPML. In [2], the semantics of DataGL is given43

in terms of bi-modal Kripke structures instead of the original data tree semantics. Here we44

give an alternative semantics in terms of a class of first-order relational structures.45

Consider the signature σDGL = {R0, R=} ∪ PROP where R= is binary and PROP is a46

countable set of unary symbols. A (pointed, first-order) model of DataGL is a pointed47

σDGL-structure (A, a) such that (i) RA0 is the transitive irreflexive closure of the ‘child’48

relation of a tree, and (ii) RA= is an equivalence relation. We denote by ModDGL the full49

subcategory of Struct∗(σDGL) spanned by models of DataGL.50

It is easily seen that any data-tree as in [2] can be encoded as a first-order model of51

DataGL in the above sense. Moreover there is a truth-preserving, two-way translation52

between DataGL-formulas and formulas of PPML over σDGL. Thus, the only essential53

difference between DataGL and PPML over σDGL is that the latter admits more general54

models. Although in this paper we concentrate on the comonadic description of PPML, a55

‘DataGL comonad’ can be recovered as a relative comonad with respect to the inclusion56

ModDGL ↪→ Struct∗(σDGL).57

The bisimulation game for PPML. We consider the following variation of the Basic58

Modal Logic bisimulation game [3], played up to k rounds between (A, a0) and (B, b0).59

On round i ∈ {0, . . . , k}, the chosen positions (ai, bi) are checked for agreement on every60

n-ary relation R ∈ σ \ {R0}: ai and bi agree iff n ≤ i and RA(ai−n+1, . . . , ai) ⇐⇒61

RB(bi−n+1, . . . , bi). Duplicator loses if the positions don’t agree in this new sense. This62

defines the k-round bisimulation game Gk((A, a0), (B, b0)).63

We also consider the k-round simulation game G→k ((A, a0), (B, b0)), where Spoiler can64

only play on A and Duplicator on B. Duplicator wins the i-th round if (ai, bi) agree as above65

except that ⇐⇒ is replaced by =⇒ .66

I Proposition 1. Two pointed structures (A, a), (B, b) ∈ Struct∗(σ) satisfy exactly the same67

PPML♦
k -formulas iff there exist winning strategies for Duplicator both in G→k ((A, a), (B, b))68

and in G→k ((B, b), (A, a)). They satisfy exactly the same PPMLk-formulas iff there exists a69

winning strategy for Duplicator in Gk((A, a), (B, b)).70

The PPML Comonad. For the sake of brevity, we define the comonad Ck on Struct∗(σ) by71

pointing out its relationship to the EF comonad [1]. Let Ek : Struct∗(σ)→ Struct∗(σ) be the72

lifting of the Ehrenfeucht-Fraïssé comonad to pointed structures by letting the distinguished73

point of Ek(A, a) be [a]. The underlying set of Ck(A, a) is defined to be the subset of74

Ek(A, a) consisting of all sequences [a1 . . . a`] ∈ |A|≤k such that ai ≺ ai+1 ∀i ∈ {1 . . . `− 1};75

and for each n-ary R ∈ σ, RCk(A,a)(s1, . . . , sn) iff (a) si ≺ si+1 for all i in range, and (b)76

RA(εA(s1), . . . , εA(sn)) (where ε is the counit of Ek).77

I Proposition 2. Ck as above is the action on objects of a sub-comonad of Ek on Struct∗(σ),78

which is moreover idempotent2.79

It can also be shown that Ck is a sub-comonad of the (lifted) pebbling comonad PN [1]80

with parameter N = N(σ) independent of k (in the sense that there is a comonad morphism81

Ck → PN with monic components), witnessing the fact that PPMLk translates to a fragment82

of both bounded quantifier rank and bounded variable number First Order Logic.83

2 It is then standard that if a pointed structure admits a coalgebra structure, it is unique. Thus we refer
to pointed structures admitting Ck-coalgebra structure as simply ‘Ck-coalgebras’.

13

G. Goren 3

I Proposition 3. (A, a) ∈ Struct∗(σ) is a Ck-coalgebra iff (1) (|A|, RA0) is a tree of height ≤ k84

rooted in a and (2) for each n-ary R ∈ σ, if a1, . . . , an ∈ |A| are such that RA(a1, . . . , an),85

then a1 ≺ · · · ≺ an, i.e. [a1 . . . an] is the unique path of length n ending in an.86

Expressivity results. We first consider the positive fragment of PPML.87

I Proposition 4. Given (A, a), (B, b) ∈ Struct∗(σ), there is a bijective correspondence between88

homomorphisms3 Ck(A, a) → (B, b) and the set of winning strategies for Duplicator in89

the k-round simulation game G→k ((A, a), (B, b)). Thus, (A, a), (B, b) ∈ Struct∗(σ) satisfy90

exactly the same PPML♦
k -formulas iff there exist homomorphisms Ck(A, a) → (B, b) and91

Ck(B, b)→ (A, a).92

With respect to full PPML, we have the following result which relies on [1, Thm. 10.1].93

I Theorem 5. Two structures (A, a), (B, b) ∈ Struct∗(σ) satisfy exactly the same PPMLk-94

formulas iff there exists a span of strong surjective homomorphisms (P, p)→ Ck(A, a) and95

(P, p)→ Ck(B, b) with some Ck-coalgebra (P, p) as common domain.96

Relationship between PPML and Basic Modal Logic. Given σ = {R0, R1, . . . , Rm}97

as before, we define a new signature σ̃ = {R0, R̃1, . . . , R̃m} where each symbol R̃j is unary.98

Given a Ck-coalgebra (A, a) (in particular it is a σ-structure), let T (A, a) ≡ (Ã, a) be the99

σ̃-structure with universe |Ã| = |A| and the following relations: RÃ0 = RA0 , and for n-ary100

R ∈ σ \ {R0}, and a ∈ |A|, R̃Ã(a) iff there exist a1, . . . , an = a such that RA(a1, . . . , an).101

I Proposition 6. T as given above defines the action on objects of a functor T : EM(Ck)→102

EM(Mk), where Mk : Struct∗(σ̃)→ Struct∗(σ̃) is the Modal Comonad over signature σ̃, which103

acts on homomorphisms as the identity on the underlying set-functions4.104

Moreover this functor is fully faithful, and its image is the full subcategory of EM(Mk)105

spanned by Mk-coalgebras (A, a) that satisfy the folowing condition: for any a′ ∈ |A| and106

n-ary relation R ∈ σ, R̃A(a′) implies that the distance from a to a′ is at least n− 1.107

As a corollary of the idempotency of Ck and Theorem 5, all (A, a) ∈ Struct∗(σ) satisfy108

exactly the same PPMLk-formulas as their ‘unravelings’ Ck(A, a). Thus, a formula ϕ ∈109

PPMLk is satisfiable iff it is satisfied by a Ck-coalgebra (we could call this the ‘coalgebra-110

model property’, which in Basic Modal Logic specializes to the tree-model property). From111

this, and using the fact that T preserves and reflects open pathwise embeddings, it follows112

that satisfiability for PPMLk reduces linearly to satisfiability for the k-bounded modal depth113

fragment of Basic Modal Logic. In particular, satisfiability for PPML is PSpace-complete.114

References115

1 Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for116

computational resources. Journal of Logic and Computation, 31(6):1390–1428, 2021.117

2 David Baelde, Simon Lunel, and Sylvain Schmitz. A sequent calculus for a modal logic on118

finite data trees. In CSL, volume 62 of LIPIcs, pages 32:1–32:16, 2016.119

3 Patrick Blackburn, Johan van Benthem, and Frank Wolter. Handbook of modal logic. Elsevier,120

2006.121

4 Mikoaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic122

on data trees and XML reasoning. Journal of the ACM (JACM), 56(3):1–48, 2009.123

3 All homomorphisms are assumed to be basepoint-preserving.
4 Note that in our context Ck and Mk are endofunctors of different categories.

14

How to Compose Shortest Paths
Jade Master

1 Acknowledgements
Thank you to Benjamin Bumpus, Jules Hedges, and
Matteo Capucci who all contributed to this work.
2 A Composition Problem
Divide and conquer is an effective method for reduc-
ing the computation time of many algorithms. With
this strategy, a problem may be broken up into sub-
domains, the problem is solved on the subdomains,
and then joined together to obtain the final solution.
This last step of recombination is the main topic of
study for this paper and may be phrased in categorical
terms. We work in the following abstract setting

Set C D
L

⊥ F

R

where C is a category whose objects are systems
broadly construed. The left adjoint L is understood as
the ”discrete system” functor and the right adjoint is
the ”underlying set functor”. The functor F: C → D
represents a computational problem with D repre-
senting some category of solutions. In this setting,
a pushout

M +LX N N

M LX

⌟
i

j

in the category C represents the gluing of a system M
with a system N along a set of boundaries X. We may
now state the crucial step of the divide and conquer
method in categorical terms.

Definition 2.1. The composition problem for F
asks: given F(M) and F(N) as inputs, find F(M +LX
N).

In this paper, C, L, R, and F will be chosen as follows.

Definition 2.2. Let [0, ∞] be the semiring of positive
real numbers including infinity. Addition is given by
min and multiplication is given by +. A [0, ∞]-graph
with vertices X is a function M: X × X → [0, ∞].
For a function f : X → Y and a matrix M: X × X →
[0, ∞], the pushforward matrix f∗(M): Y×Y → [0, ∞]
is defined by

f∗(M)(i, j) =
∑

(a,b)∈(f×f)−1(i,j)

M(i, j)

Note that confusingly, the zero element for [0, ∞] is
∞ and the one element is 0.

Definition 2.3. For [0, ∞]-graphs M: X×X → [0, ∞]
and N: Y×Y → [0, ∞] a function f : X → Y is a mor-
phism of [0, ∞] − graphs if the pushforward satisifes
f∗(M) ≥ (N). This defines a category [0, ∞]Graph of
weighted graphs and their morphisms.

Proposition 2.1. There is an adjunction

Set [0, ∞]Graph
L

⊥
R

whose left adjoint sends a set X to the [0, ∞]-matrix
with vertices given by X and every entry given by
LX(i, j) = ∞. The right adjoint sends a [0, ∞]-graph
to its underlying set of vertices.

The functor F in our setup will compute the short-
est paths on a weighted graph. This problem can be
understood algebraically. Let Mat(X, [0, ∞]) be the
semiring of [0, ∞]-graphs over a set X. In this semir-
ing, addition is given by pointwise minimum and mul-
tiplication is given by

M · N(i, j) = min
k∈X

{M(i, k) + N(k, j)}

which is the usual matrix multiplication valued in
min-plus semiring.

Proposition 2.2. The shortest paths in a [0, ∞]-
graph M, are given by the matrix exponential

F (M) =
∑

n≥0
Mn

in the semiring Mat(X, [0, ∞]).

This formula may be interpreted as follows: The ma-
trix power Mn has entries given by the shortest paths
in exactly n steps. Therefore, summing these values
over all n ≥ 0 gives the shortest paths in any number
of steps.

The algebraic path problem generalizes the shortest
path problem by allowing the semiring to vary. For
different choices of semiring, the algebraic path prob-
lem asks for most likely paths, maximum capacities,
connectivity, and more substantially the language of
an NFA. As explained in [2], when S is a quantale,
there is an adjunction

SGraph SCat

FS

⊥
US

1

15

between the category of S-enriched graphs and S-
enriched categories. The left adjoint of this adjunc-
tion sends an S-enriched graph to the solution of its al-
gebraic path problem. For each left adjoint FS, there
there is an instance of the composition problem. In
this paper, we solve the composition problem when
FS = F i.e. the special case when S is the semiring
[0, ∞]. Before doing this, we must state a relevant
result.

Proposition 2.3. The pushout of [0, ∞]-graphs is
given by the pointwise sum

M +LX N ∼= i∗(M) + j∗(N)

In general, we use boldface to indicate the pushfor-
ward of a weighted graph along an implied function.
For example, let M and N denote the above pushfor-
wards of M and N. Note that pushforward commutes
with F in the sense that F(i∗(M)) = i∗(F(M)) and
F(j∗(N)) = j∗(F(N)).
3 A Gainful Solution
Because F is a left adjoint we have reason to be op-
timistic about a solution to its composition problem.
Left adjoints preserve pushouts so there is an isomor-
phism

F (M +LX N) ∼= F (M) +F (LX) F (N)

where the pushout on the right is computed in the
category of [0, ∞]-enriched categories. In [2], it
was shown that this pushout may be computed as
F(U(F(M)) +X U(F(N))). Although this gives a so-
lution to the composition problem for F it is not a
practical one because the final application of F is very
expensive in terms of computation time. The main
result of this paper is a more practical expression for
this pushout.

Theorem 3.1. For pushouts and F as above we have
that

F (M +LX N) ∼=
∑

n≤|X|
F(M)F(N)F(M) . . .︸ ︷︷ ︸

n times

+ F(N)F(M)F(N) . . .︸ ︷︷ ︸
n times

where F(M) and F(N) denote the pushforwards
i∗(F(M)) and j∗(F(N)) respectively.

Proof. Because M +LX N = M + N we have that

F(G +K H) =
∑

n≥0
(G +K H)n

∼=
∑

n≥0
(M + N)n

=
∑

n≥0

∑

ṽ∈2n

Xv1 . . . Xvn (1)

where

Xvi
=

{
M if vi = 0
N if vi = 1

and 2n is the set of boolean vectors ṽ =
(v1, v2, . . . , vn) with length n. The last equality is true
in any semiring and is a well-known as the generaliza-
tion of the binomial theorem for non-commutative el-
ements. We define a function γ :

∑
n≥0 2n → N where

sum now indicates the coproduct of sets. γ(ṽ) is called
the crossing number of ṽ and it is equal to the num-
ber of times ṽ switches between 0 and 1. It may be
defined by induction on the vector length i.e.γ(ṽ) =
0 if length(ṽ) = 0 or 1 and γ((v1, v2, . . . , vn)) =

γ((v1, v2, . . . , vn−1)) +
{

1 if vn = vn−1

0 if vn ̸= vn−1

The sum of Expression 1 may be repartitioned using
the crossing numbers to obtain

=
∑

n≥0
[
∑

i≥1
Mi

∑

i≥1
Ni . . .

︸ ︷︷ ︸
n times

+
∑

i≥1
Ni

∑

i≥1
Mi . . .

︸ ︷︷ ︸
n times

] (2)

The last equality accounts for all terms with cross-
ing number n. They may either start with M or N
and then continue for any nonzero number of terms.
Note that the maximum crossing number which may
contribute to this sum is |X|. This is because a
shortest path with crossing number greater than |X|
would cross at least one vertex in |X| more than once
and could therefore be shortened by removing a loop.
Therefore Expression 2 is equal to

=
∑

n≤|X|
[
∑

i≥1
Mi

∑

i≥1
Ni . . .

︸ ︷︷ ︸
n times

+
∑

i≥1
Ni

∑

i≥1
Mi . . .

︸ ︷︷ ︸
n times

] (3)

The difference between the above sum and the desired
expression is that each F(M) and F(N) include paths
of length 0. This causes each term of the desired re-
sult to also include terms with lower crossing number.
However, because [0, ∞] is idempotent adding these
terms twice does not affect the sum.

This theorem gives an algorithm for the composition
problem for F: simply plug F(M) and F(N) into the
isomorphism of Theorem 3.1. Next we use this iso-
morphism to find single source single target shortest
paths.
4 A Compositional Algorithm
F(M) and F(N) may be broken into the block matri-
ces

F(M) =




MM MX 0
XM XXM 0

0 0 0


 F(N) =




0 0 0
0 XXN XN
0 NX NN




so that each block is labeled by the the edges that
it contains. Explicitly, MM consists of the edges go-
ing from M to M, MX from M to X, XM from X to
M, XXM from X to X within M and similarly for the

2

16

blocks of F(N). Taking the blocks as their own vari-
ables, we plug F(M) and F(N) into the isomorphism
of Theorem 3.1 to get the composition symbol ma-
trices: Symbol(k) = F(M +LX N)) when |X| = k.
The composition symbols, Symbol(k, i, j)), are the
entries of these matrices. For example,

Symbol(4, 1, 3) = MX ·XN +MX ·XXN ·XXM ·XN

The terms of Symbol(4, 1, 3) represent the paths of
length less than 4 which start in M and end in N.
The second term of this symbol represents the paths
which travel between components as drawn below

MX

XXN

XXM

XN

The single source single target shortest path algo-
rithm has three steps:

1. The composition symbols are computed up to the
size of the boundary. This needs to be done only
once for each boundary size.

2. Precompilation. In this step, the all pairs short-
est paths F(M) and F(N) are computed, pushed
forward to F(M) and F(N), and broken into
blocks as shown above. The computations in this
step only need to be done once for each input ma-
trix so their results may be reused in all further
computations.

3. Composition. In this step, the source and tar-
get nodes s and t are located within the blocks
of F(M) and F(N). The appropriate composition
symbol is looked up and evaluated on the blocks
of F(M) and F(N) using the operations of the
min-plus matrix semiring. The first term of this
expression is replaced by the row-vector corre-
sponding to s an the last term must be replaced
by the column vector corresponding to t.

An implementation in Python for this algorithm may
be found at [1]. Figure 4 compares this algorithm to
the networkx implementation of Dijkstra’s algorithm.
Figure 4 was computed using the pushout of two ran-
domly weighted dense graphs with 500 nodes each.
For each boundary size, the average computation time
for 50 runs of both algorithms with randomly chosen
source and target is plotted with the standard devi-
ation of represented by shading. The precompilation
time for this plot was 1.34 seconds. As the size of
the boundary increases, the computation time for the
compositional algorithm increases because the com-
position symbols grow very large. On the other hand,
computation time for Dijkstra’s algorithm decreases

Figure 1: Comparison of Algorithms

slightly as the boundary size increases because identi-
fying more nodes reduces the total size of the graph.
The speed-up from using the compositional algorithm
is most dramatic when the graph size is large and the
boundary size is small. For the composition of two
random graphs with 2000 nodes along a boundary of
size 5, the times for the compositional algorithm were
sampled 50 times for a mean value of 0.1602 seconds
and with standard deviation 0.0169. Dijkstra’s al-
gorithm was sampled with the same parameters for a
mean value of 39.7804 seconds and standard deviation
3.3561. Regardless, there is no free lunch, precompi-
lation for the compositional algorithm took 93.0590
seconds.
5 Conclusion
In this paper we found a formula for composing short-
est paths and described an algorithm which imple-
ments this formula. We hope that the results and
algorithm may be generalized to other instances of
the algebraic path problem. In particular we are in-
terested in the case of semiring when the algebraic
path problem asks for the language of a nondetermin-
istic finite automaton. Orthogonally, we believe the
results of this paper may be extended to more com-
plicated decompositions of weighted graphs and plan
on addressing this in future work.
References
[1] J. Master, PathComposer, 2022, Available at

https://github.com/Jademaster/pathcomposer.
(Referred to on page 3.)

[2] J. Master, The Open Algebraic Path Prob-
lem, In Proceedings of CALCO 2021, pp 20:1–
20:20, Schloss Dagstuhl, 2021, Available at
https://arxiv.org/abs/2005.06682. (Referred to
on page 1, 2.)

3

17

Recent Advances in Homomorphism
Indistinguishability

Tim Seppelt

May 27, 2022

In 1967, Lovász [11] proved that two graphs G and H are isomorphic if and only if they are
homomorphism indistinguishable over the class of all graphs, i.e. for all graphs F the number of
homomorphisms F → G is the same as the number of homomorphisms F → H. This seminal
paper sparked a fruitful area of research concerned with homomorphism indistinguishability
over various restricted graph classes. In recent years, homomorphism indistinguishability over
many natural graph classes has been characterised in terms of equivalence over certain logical
fragments [7, 8, 14] and systems of equations [6, 13, 10]. For example, over the class of trees,
homomorphism indistinguishability amounts to equivalence over the two-variable fragment of
first-order logic with counting quantifier as well as feasibility of the fractional isomorphism
system of equations. Other instances are listed in Table 1.

Despite the deepened understanding of various instances of homomorphism indistinguishability,
the proofs of the results are often tailored to the specific graph classes and lack a uniform
foundation. Towards a universal theory of homomorphism indistinguishability, powerful tools
from algebra and category theory have emerged in recent years. This talk gives an overview of
these developments and sketches the difficulties arising when attempting to reconcile the various
approaches. Moreover, new results [15] attempting such a reconciliation are presented.

Category Theory: Comonads In various papers [1, 3, 5], it has been argued that comonads give
rise to a powerful framework for studying homomorphism indistinguishability. In layman’s terms,
a comonad describes how to wrap a graph into an object which encodes certain information of
interest. More precisely, it can be shown [2] that for many natural graph classes there exists
a comonad C such that a graph belongs to this class if and only if its admits a C-coalgebra.
Furthermore, under mild assumptions, homomorphism indistinguishability of G and H over this
class amounts to isomorphism of the cofree coalgebras associated to G and H by C. This approach
has led to uniform proofs for logical characterisations of homomorphism indistinguishability over
graphs of bounded treewidth and -depth [5] and to new results concerning graphs of bounded
pathwidth [14].

Representation Theory: Homomorphism Tensors Homomorphism indistinguishability results
may also be obtained by the means of algebra and representation theory [12, 13, 10]. This is
done by considering ℓ-labelled graphs F = (F, u1 . . . uℓ) which comprise a graph F and selection
of its vertices u1, . . . , uℓ ∈ V (F). The set of all suitably ℓ-labelled graphs from a graph class F
has an algebraic structure induced by parallel composition. One may now attempt to represent
this algebraic object in terms of matrices. It turns out that, in many cases, these representations
are semisimple and that their characters capture precisely the homomorphism counts of interest.
In this way, representation-theoretic arguments yield systems of equations whose feasibility is
equivalent to homomorphism indistinguishability over graph classes such as those of bounded
pathwidth, treewidth, and -depth.

1

18

Graph class Logical characterisation System of equations
Cycles unknown cospectrality of adjacency matri-

ces
Trees two-variable fragment of first or-

der logic with counting [7]
fractional isomorphism [18]

Tree width ≤ k (k + 1)-variable fragment of first-
order logic with counting [7]

non-negative solution to Sherali–
Adams relaxation of fractional iso-
morphism [4, 9, 6]

Path width ≤ k [14] rational solution to Sherali–
Adams relaxation of fractional
isomorphism [6, 10]

Tree depth ≤ q quantifier-depth-q fragment of
first-order logic with counting [8]

[10]

Graphs with k-pebble
forest cover of depth q

(k +1)-variable quantifier-depth-q
fragment of first-order logic with
counting [1, 3, 5, 17]

[15]

Planar graphs unknown quantum isomorphism [13]
Trees of bounded degree unknown [10]

Table 1: Some instances of homomorphism indistinguishability

C*-algebras: Planar Graphs A third approach to the matter has been developed by Mančinska
and Roberson [13] who proved that homomorphism indistinguishability over planar graphs
amounts to the feasibility of a system of equations with variables ranging over a C*-algebra.
Their argument prominently rests on labelled graphs and their representations as homomorphism
tensors. Instead of considering only a constant number of labels, they work over all possible
finite numbers of labels simultaneously, which leads to the study tensor category with duals.
A crucial ingredient here is the Tannaka–Krein duality, which relates quantum groups to their
categories of representations. This characterisation of homomorphism indistinguishability has so
far eluded comonadic means or more elementary representation-theoretic approaches.

Reconciling the Approaches In order to derive characterisations in terms of logic or systems of
equations in a uniform manner, a rich set of tools based on representation and category theory has
been developed. So far, none of these approaches is able to explain the results on planar graphs.
This talk surveys the encountered difficulties and presents steps towards a reconciliation of the
various approaches. To that end, a novel characterisation [15] of equivalence over the k-variable
quantifier-depth-q fragment of first-order logic with counting quantifiers is presented. This result
builds upon insights from the category-theoretic study of homomorphism indistinguishability
and introduces new algebraic tools extending the known representation-theoretic machinery. If
time permits, general properties of equivalence relations on the class of graphs stemming from
homomorphism indistinguishability as studied in [16] will be discussed.

References
[1] Samson Abramsky, Anuj Dawar, and Pengming Wang. The Pebbling Comonad in Finite Model

Theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’17. IEEE Press, 2017. event-place: Reykjav́ık, Iceland. doi:10.1109/LICS.2017.8005129.

[2] Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete density comonads and graph parameters,
May 2022. URL: http://arxiv.org/abs/2205.06589.

[3] Samson Abramsky and Nihil Shah. Relating Structure and Power: Comonadic Semantics for

2

19

Computational Resources. In Corina Ĉırstea, editor, Coalgebraic Methods in Computer Science,
pages 1–5, Cham, 2018. Springer International Publishing. doi:10.1007/978-3-030-00389-0_1.

[4] Albert Atserias and Elitza Maneva. Sherali–Adams Relaxations and Indistinguishability in Counting
Logics. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS
’12, pages 367–379, New York, NY, USA, 2012. Association for Computing Machinery. doi:
10.1145/2090236.2090265.

[5] Anuj Dawar, Tomás Jakl, and Luca Reggio. Lovász-type theorems and game comonads. In 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 -
July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470609.

[6] Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.

[7] Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory,
64(4):330–342, August 2010. doi:10.1002/jgt.20461.

[8] Martin Grohe. Counting bounded tree depth homomorphisms. In Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 507–520. ACM, 2020.
doi:10.1145/3373718.3394739.

[9] Martin Grohe and Martin Otto. Pebble Games and Linear Equations. J. Symb. Log., 80(3):797–844,
2015. doi:10.1017/jsl.2015.28.

[10] Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations.
In Miko laj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris,
France, volume 229 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. to appear.
doi:10.4230/LIPIcs.ICALP.2022.26.

[11] László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica,
18(3):321–328, September 1967. doi:10.1007/BF02280291.

[12] László Lovász. Large Networks and Graph Limits. American Mathematical Society, 2012. doi:
10.1090/coll/060.

[13] Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of
homomorphism counts from planar graphs. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 661–672. IEEE,
2020. doi:10.1109/FOCS46700.2020.00067.

[14] Yoàv Montacute and Nihil Shah. The pebble-relation comonad in finite model theory. ArXiv,
2110.08196, 2021. doi:10.48550/arXiv.2110.08196.

[15] Gaurav Rattan and Tim Seppelt. Weisfeiler–Leman and Graph Spectra, 2022. doi:10.48550/ARXIV.
2103.02972.

[16] David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded
degree. Private communication, January 2022.

[17] Gian Luca Spitzer. Characterising Fragments of First-Order Logic by Counting Homomorphisms.
B.Sc. Thesis, RWTH Aachen University, 2022.

[18] Gottfried Tinhofer. Graph isomorphism and theorems of Birkhoff type. Computing, 36(4):285–300,
December 1986. doi:10.1007/BF02240204.

3

20

Coherence, conjectures, and congruential functions

Peter M. Hines – University of York

1. Summary This talk is based on previously unobserved connections between an unresolved conjecture of Lothar
Collatz [10], the first two parts of Girard’s Geometry of Interaction program [5, 6], categorical coherence, and Richard
Thompson’s group F . It is based on, but significantly extends, the draft paper https://arxiv.org/abs/2202.04443

We decompose the iterative step from the original Collatz conjecture (Section 2) into a series of more primitive steps.
This allows us to express it as a simple game in two distinct ways, that differ by the ordering of these elementary steps.
These distinct orderings correspond to a choice between left- and right- associativity for composition.

These distinct games are related by a natural transformation of monoid homomorphisms whose unique component
is the successor function, succ. We treat this as a member of the symmetric inverse monoid I(N), in order to use its
generalised inverse to define define conjugation and commutators based on the successor.

The commutator of the successor function and the arithmetic operation from Collatz’s conjecture then gives a function
familiar from Girard’s first two Geometry of Interaction papers [5, 6], where conjunction is modelled as an injective
homomorphism on the symmetric inverse monoid on the natural numbers, ? : I(N)×I(N)→ I(N). This is well-known
(e.g. [8, 7, 1]) to be a (semi-monoidal) categorical tensor, and the above commutator is its unique canonical associativity
isomorphism, satisfying MacLane’s pentagon condition.

The long-established folklore that there is a close connection between associativity / MacLane’s pentagon, and Thomp-
son’s group F , was put on a firm footing by P. Dehornoy [4]. We use this observation to give a group of Conway’s
congruential functions (Section 2.1) isomorphic to F , based on Collatz’s conjecture and Girard’s conjunction. In stark
contrast to Collatz’s problem, questions of finite vs. infinite orbits in this setting are decidedly trivial.

Categorically, the associator for Girard’s conjunction is the component of a natural transformation describing re-
bracketing; we similarly interpret the two distinct ways of expressing Collatz’s conjecture as components of natural
transformations between insertions and deletions of matching pairs of brackets. This gives, as one may expect, re-
bracketings as combinations of deleting and re-inserting pairs of brackets.

We give this as a commuting diagram of congruential functions that contains, but extends, MacLane’s pentagon (Figure
1). The red sub-diagram is (the single-object version of) MacLane’s classic Pentagon condition, α2 = (α?Id)α(Id?α). This
interprets as mappings between vertices of the fourth associahedron K4. The inner pentagon describes instead mappings
between edges of K4, and the pentagram figure relating the two gives mappings between vertices and edges.

Figure 1: A commuting diagram of congruential functions

N

N

N

N

N

N

N N

N

N

α

α

Id ? αα

α ? Id

γ−1
R

γL

γ−1
RγL

Id ? γ−1
R

I
d
?
γ L

γ−1
R

γL

γ
−1

R

? I
d

γ
L
?
I
d

α −
1

(γ
−1

L

? I
d)
γL

(γ −
1

R
?
I
d
)γ

L

γ−1
R (Id ? γL)

γ
−
1

R
(I
d
?
γ R

)

Where :

γR is the operator from Collatz’s conjecture
(Figure 2(b))

γL = succ−1.γR.succ is the alternative Collatz operator
(Figure 2(a))

(?) : I(N)× I(N)→ I(N) is the conjunction from
Girard’s GoI system (Section 3)

α = γLγ
−1
R =

[
succ, γ−1R

]
is the canonical associativity

isomorphism for Girard’s conjunction (?).

Finally, we put this observation in a general setting. We show how to construct commuting diagrams of congruential
functions from arbitrary associahedra, and demonstrate that paths labelled by the function from Collatz’s conjecture occur
on every associahedron. 21

2. The original Collatz problem Although Collatz’s 3x+ 1 problem is understandably famous, a lesser-known
but equally intriguing (& similarly unsolved) problem of his was publicised in [10], where J. Lagarias describes the ‘Original
Collatz Problem’ (OCP) found in unpublished notebooks of Collatz dated 1st July 1932. This conjectures that the orbit
of 8 under the bijection γR : N → N (given in Figure 2(b)) is unbounded. Collatz described the origins of his 3x + 1
problem in [2], and similarly described the origins of his original conjecture in an (unpublished) letter to J. Lagarias
(1985); unfortunately this letter has since been lost [9].

In the absence of Collatz’s motivation, we may invent our own story : the above bijection decomposes into more
primitive steps, consisting of a (three-player) fair deal of a countably infinite pack of cards, and two (perfectly interleaving)
riffle shuffles of two hands of cards. These implement Collatz’s bijection as shown in Figure 2(b); his conjecture becomes a
question about the paths of cards under repeated rounds of this game. This graphical description also highlights a second
alternative ordering of the same primitives; this is shown in Figure 2(a), and implements a distinct bijection γL.

Figure 2(a): The left-associated Collatz bijection Figure 2(b): The right-associated Collatz bijection
fairDeal

Alice Bob Dealer

riffle

riffle
γL(n) =





4n
3 n (mod 3) = 0

4n+2
3 n (mod 3) = 1

2n−1
3 n (mod 3) = 2

fairDeal

Alice Bob Dealer

riffle

riffle
γR(n) =





2n
3 n (mod 3) = 0

4n−1
3 n (mod 3) = 1

4n+1
3 n (mod 3) = 2

These are related by the identity 1 + γKL () = γKR (+ 1) for all K ∈ N, giving a natural transformation of monoid
homomorphisms whose component is the successor function. We may thus express the OCP in terms of either γR or γL.

2.1 Congruential functions and universal computability

It is entirely possible that the OCP is undecidable, although this could never be proved. Motivated by Collatz’s more
famous problem, in [3] John Conway considered congruential functions – maps on N defined piecewise-linearly on exact
covering systems. He demonstrated – via a reduction to Post production systems – that Turing-complete computation
could be implemented via iterative problems such as those posed by Collatz (see also [12]). Deciding whether the orbit of
a given natural under a congruential function is finite is exactly as hard as proving that a computer program terminates
on some given input.

Despite – or perhaps because of – the link with universal computability, it is still worthwhile to study such problems
for their algebraic and categorical interest, even without tackling the problem of whether such conjectures are true. We
give a close connection with Girard’s Geometry of Interaction series of papers; this shows the bijections γR, γL : N → N
expressing the OCP to be canonical coherence isomorphisms, closely linked to coherence for associativity, and Richard
Thompson’s group F .

3. The conjunction of Girard’s Geometry of Interaction In [5, 6], propositions of Multiplicative-
Exponential Linear Logic are modelled (up to M. Barr’s l2 functor) as partial injective functions on N. The multiplicative

conjunction is then modelled as an injective inverse monoid homomorphism (a ? b)(n) =

{
2a(n/2) n even,
1 + 2b((n− 1)/2) n odd.

This is well-known to be a semi-monoidal tensor (e.g. [8, 1]), associative up to a canonical associativity isomorphism
α : N → N satisfying MacLane’s pentagon condition (the red sub-diagram of Figure 1). Direct calculation gives this
associator to be the congruential function α = γLγ

−1
R .

Using the natural transformation relating the left and the right Collatz bijections, we may therefore write this in terms
of the function written down by Collatz, as α = γR(γ−1R (n) + 1)− 1. Working with partial injective functions, as used by
Girard, we may also use generalised inverses to write this as a (inverse semigroup theoretic) commutator α =

[
succ, γ−1R

]
.

3.1 A congruential realisation of Richard Thompson’s F
Girard’s conjunction also has a natural interpretation in terms of shuffles & deals of cards, at least for bijections.

A countably infinite pack is dealt out to Alice and Bob, who apply bijections a and b to their respective
hands. These are returned to the dealer, who shuffles them back together.

This process implements the conjunction (a ? b).
Given this intuition, it is perhaps unsurprising that the ‘conjunction’ of two congruential bijections is itself a congruen-

tial bijection. We use this, together with the close connection between coherence for associativity / MacLane’s pentagon
condition with Thompson groups described in [4], to give a group of congruential bijections isomorphic to F . We define
X0 = α =

[
succ, γ−1R

]
, and Xj+1 = Id ? Xj , for all j ∈ N. The set {Xj}j∈N then generates a subgroup of congruential

functions isomorphic to Thompson’s F . We further show that the problem of characterising orbits is trivial for this set;
the orbit of every natural number is either of length zero (i.e. a fixed-point), or unbounded.

22

4. A categorical explanation We account for all the above results categorically. Girard’s conjunction may
be seen as the first of an infinite family of ‘k-ary elementary conjunctions’ – injective inverse monoid homomorphisms
µk : I(N)

×k
↪→ I(N) defined by µk(f0, f1, . . . , fk−1)(n) = k.fr

(
n−r
k

)
+ r, where r = n (mod k), with the simplest

non-trivial example (i.e. µ2 = (?) : I(N) × I(N) ↪→ I(N)) being Girard’s semi-monoidal tensor. These generate a
(non-symmetric) operad GC of ‘generalised conjunctions’, as a sub-operad of the endomorphism operad of I(N) in the
category of inverse monoids & their homomorphisms. The non-symmetric operad GC is freely generated by one operation
of each arity, and thus isomorphic to the formal operad RPT of rooted planar trees.

In order to give an interpretation of Collatz’s bijections as a form of coherence, we consider natural isomorphisms
between generalised conjunctions. Those between the generalised conjunctions of arity three – i.e. the inverse monoid
homomorphisms µ2(µ2(,),) , µ2(, µ2(,)) , µ2(, µ2(,)) : I(N)

×3
↪→ I(N) have, as unique components, the left-

and right- Collatz bijections, and the associator. These homomorphisms, and natural isomorphisms between them, form
a posetal functor category.

In the general case, we describe natural isomorphisms between all generalised conjunctions of the same arity. These
are congruential bijections, and are the arrows of posetal subcategories of the functor categories of inverse monoid ho-
momorphisms, Inv(I(N)

×k
, I(N)), for all k > 0. We take the coproduct of these to give a posetal category closed under

generalised conjunctions (including Girard’s conjunction µ2 = (?) as a semi-monoidal tensor). This, of course, contains
(a unitless version of) MacLane’s posetal category (W,⊗) as a special case.

As GC ∼= RPT, it is natural to label facets of the n-th associahedron Kn with generalised conjunctions of arity n (this
is for all facets, not simply the 1-skeleton), and paths between them labelled by the above unique natural isomorphisms
– congruential functions in the corresponding posetal functor category.

A faithful functor from this posetal category to I(N) itself gives a class of diagrams, based on associahedra and labelled
by congruential functions, guaranteed to commute. We then demonstrate that well-known [11] embeddings Kn ↪→ Kn+a

preserve path-labellings. Hence Collatz’s bijections appear as natural transformations between generalised conjunctions
of arbitrary arity, and so as labels of paths in commuting diagrams derived from arbitrary dimensional associahedra.

Future directions Our starting point was a close connection between coherence for associativity (for Girard’s con-
junction) and the OCC. If time permits, we will briefly describe some supporting evidence for the claim that Collatz’s 3x+1
problem can similarly be seen as a question of coherence for associativity & symmetry (again, for Girard’s conjunction).

References

[1] S. Abramsky, E. Haghverdi, and P. Scott. Geometry of interaction and linear combinatory algebras. Mathematical
Structures in Computer Science, 12 (5), 2002.

[2] Lothar Collatz. On the motivation and origin of the 3n + 1 problem. J. Qufu Normal University, Natural Science
Edition, 12(3):9–11, 1986.

[3] John Conway. Unpredictable iterations. Proc. 1972 Number Theory, pages 49–52, 1972.

[4] P. Dehornoy. The structure group for the associativity identity. J. Pure Appl. Algebra, 111, 1-3:59–82, 1996.

[5] J.-Y. Girard. Geometry of interaction 1. In Proceedings Logic Colloquium ’88, pages 221–260. North-Holland, 1988.

[6] J.-Y. Girard. Geometry of interaction 2: deadlock-free algorithms. In Conference on Computer Logic, volume 417 of
Lecture Notes in Computer Science, pages 76–93. Springer, 1988.

[7] Esfan Haghverdi. A categorical approach to linear logic, geometry of proofs and full completeness. PhD thesis,
University of Ottawa, 2000.

[8] P. Hines. The algebra of self-similarity and its applications. PhD thesis, University of Wales, Bangor, 1997.

[9] J. Lagarias. private communication, 2020. Shared with permission.

[10] Jeffrey Lagarias. The 3x+ 1 problem and its generalisations. American Mathematical Monthly, 92, 01 1985.

[11] Jean-Louis Loday. The multiple facets of the associahedron. 2005.

[12] Sergei Ju. Maslov. On e. l. post’s “tag problem”. Trudy Matematicheskogo Instituta imeni V.A. Steklova, 72:5–56,
1964. English translation available as [13].

[13] Sergei Ju. Maslov. On e. l. post’s “tag problem”. In B. M. Budak, editor, Eleven Problems on Logic, Algebra,
Analysis, and Topology, A.M.S. Translations. American Mathematical Society, 1971.23

Query Algorithms Based on Homomorphism Counts

Wei-Lin Wu∗

Department of Computer Science and Engineering,
University of California Santa Cruz

wwu53@ucsc.edu

Abstract

In a recent paper, Chen et al. investigated the expressive power of query algorithms in identifying classes of graphs
using a fixed number of left homomorphism counts and compared it with that of such query algorithms using a fixed
number of right homomorphism counts. We delve deeper into this comparison regarding first the constraint satisfaction
problems and second the graph isomorphism problem together with a proposal of a hybrid (left and right) query
algorithm that combines the best features of each.

1 Introduction

Two classical results separately by Lovász [Lov67] and by Chaudhuri and Vardi [CV93] characterize graph isomorphism
via homomorphism counts. Writing hom(G,H) for the number of homomorphisms from G to H, for graphs G,H of size
≤ n (n ≥ 1), the former says that they are isomorphic if and only if hom(F,G) = hom(F,H) for all graphs F of size ≤ n,
while the latter states that they are isomorphic if and only if hom(G,F) = hom(H,F) for all graphs F of size ≤ n.

In [CFLX21], Chen et al. studied the question whether a class of graphs admits a left (non-)adaptive algorithm. Let
C be a class of graphs. A left k-non-adaptive algorithm for C (k ≥ 1) consists of a class F = {F1, . . . , Fk} of graphs and
a decidable set X ⊆ Nk such that, given any graph G as input, k queries hom(F1, G), . . . ,hom(Fk, G) are made to decide
whether G ∈ C as output: G ∈ C if and only if (hom(F1, G), . . . ,hom(Fk, G)) ∈ X.1 A left k-adaptive algorithm for C differs
from a non-adaptive one in that the queries except the first one are adaptive: for input G, each Fi is computed as a function
Fi(n1, . . . , ni−1) of n1, . . . , ni−1 for i ∈ {2, . . . , k} (but F1 is fixed), where n1 := hom(F1, G), . . . , nk−1 := hom(Fk−1, G).
We say C admits a left k-(non-)adaptive algorithm if there is such an algorithm for C. Symmetrically, the same can be
defined for right k-(non-)adaptive algorithm for C, etc., by making the k queries hom(G,F1), . . . ,hom(G,Fk) instead.2

Chen et al. showed (i) if a class of graphs is definable by some Boolean combination of universal first-order sentences,
then it admits a left non-adaptive algorithm, and (ii) three queries hom(F0, G),hom(F1, G),hom(F2, G) suffice to determine
the isomorphism type of any graph G where F1 = F1(n), F2 = F2(n) are computed as functions of n := hom(F0, G),3 using
the aforementioned result by Lovász. They also presented examples of classes admitting a left (non-)adaptive algorithm
but not any right (non-)adaptive algorithms.

In this paper, we aim to identify some situations where queries of the form hom(G,F) with input G are useful: (i) the
constraint satisfaction problem with a fixed template H, viewed as a class, admits a right 1-non-adaptive algorithm
but not any left non-adaptive algorithms except for trivial cases of H (see Section 2), and (ii) for n ≥ 1, a graph
F0 = F0(n) as a function of n can be constructed such that for all graphs G,H of size n, they are isomorphic if and only
if hom(G,F0) = hom(H,F0), using the aforementioned result by Chaudhuri and Vardi (see Section 3).

The conventions, notations and definitions in this paper are given now. Graphs are finite, undirected, loop-free, and
do not have multiedges. By a class of graphs we mean a collection of graphs in which no two graphs are isomorphic. The
set of nodes in a graph G is denoted V (G). The size of G is |V (G)|. Let N := {0, 1, 2, . . .} and N+ := {1, 2, 3, . . .}. The
disjoint union operation is ⊕. We write

⊕n
i=1 Fi for the disjoint union of F1, . . . , Fn (n ∈ N+) and write

⊕
n F when

F1 = · · · = Fn = F . Let G and H be two graphs. A homomorphism from G to H is a mapping h : V (G) → V (H)
that preserves adjacency. We write hom(G,H), inj(G,H) and sur(G,H) for the number of homomorphisms, injective
homomorphisms and surjective4 homomorphisms from G to H, respectively. If h : V (G) → V (H) is bijective and is a
homomorphism from G to H and if its inverse h−1 is a homomorphism from H to G, then h is called an isomorphism
from G to H; in case H = G, we call it an automorphism of G. We write aut(G) for the number of automorphisms of G.

∗This paper is my joint work with my advisor at UC Santa Cruz, Professor Phokion G. Kolaitis.
1Such algorithm has the qualifier left because in the k queries hom(F1, G), . . . , hom(Fk, G) the left argument of hom(·, ·) varies (over a class)

while the right argument is fixed to the input graph G.
2Occasionally, we say C admits a left (or right) (non-)adaptive algorithm when the number k of queries is irrelevant.
3They argued that three queries are necessary in some cases and hence are indeed optimal.
4Both node-wise and edge-wise.

1

24

2 Constraint Satisfaction Problem and Query Algorithms

The constraint satisfaction problem CSP(H) with a fixed graph H (called the template) takes an input graph G and
answers as output whether hom(G,H) > 0. We will identify CSP(H) with the class {G | hom(G,H) > 0}. Obviously, for
all H, the class CSP(H) admits a right 1-non-adaptive algorithm: Take F = {H} and X = N+. However, it turns out
that CSP(H) does not admit any left non-adaptive algorithm unless H contains no edge (i.e., H has chromatic number
1), for which there is a trivial left 1-non-adaptive algorithm with F = {K2} (K2 denotes the graph of two nodes connected
by an edge) and X = {0}. Note that to assert a class C of graphs does not admit a left k-non-adaptive algorithm for any
k ≥ 1 it suffices to show that for every nonempty finite class F of graphs, there are graphs G0 ∈ C and G1 /∈ C such that
hom(F,G0) = hom(F,G1) for all F ∈ F .

Theorem 1. Let H be a graph. Then CSP(H) admits a left non-adaptive algorithm if and only if H contains no edge.

We prove this theorem in the sequel. Let us begin with the two immediate properties. (i) Additivity of Homomorphism
Counts: hom(G,

⊕n
i=1 Fi) =

∑n
i=1 hom(G,Fi) for arbitrary graphs F1, F2, . . . , Fn and a connected G. (ii) Multiplicativity

of Homomorphism Counts: hom(
⊕n

i=1 Fi, G) =
∏n

i=1 hom(Fi, G) for arbitrary graphs F1, F2, . . . , Fn and G.
Next, we write Cn for the cycle of n nodes (n ≥ 3); a graph is cyclic if it contains Cn as a subgraph for some n ≥ 3,

otherwise is acyclic. We argue that for every nonempty finite class F of connected graphs, there are a 2-colorable graph
G0 and a non-2-colorable graph G1 such that hom(F,G0) = hom(F,G1) for all F ∈ F . Given such F , let s be the
maximum size of graphs in F , and denote by F ′ the class of all connected graphs of size ≤ s (note that F ⊆ F ′). Let
n ≥ max {3, s + 1} be an odd integer, and choose G0 := C2n and G1 := Cn ⊕ Cn. Clearly, G0 is 2-colorable while G1

is not. Now, we divide the class F ′ into three disjoint subclasses F ′1, F ′2 and F ′3 such that F ′1 consists of cyclic graphs,
F ′2 consists of trees of degree > 2 and F ′3 consists of paths.5 Observe that (1) inj(F ′, G0) = inj(F ′, G1) = 0 for F ′ ∈ F ′1
because all cycles appearing in the graphs in F ′1 have length ≤ s < n, (2) inj(F ′, G0) = inj(F ′, G1) = 0 for F ′ ∈ F ′2 because
G0 and G1 have degree 2, and (3) inj(F ′, G0) = inj(F ′, G1) for F ′ ∈ F ′3 because all paths in F ′3 have length < s < n.
Thus, inj(F ′, G0) = inj(F ′, G1) for all F ′ ∈ F ′. It follows that for all F ∈ F , we have hom(F,G0) = hom(F,G1) since the

image of F under a homomorphism must be in F ′ and hom(F,G0) =
∑

F ′∈F ′
sur(F, F ′) · inj(F ′, G0)/aut(F ′), and likewise

for hom(F,G1).
In fact, for every arbitrary nonempty finite class F in which graphs are not necessarily connected, we can take the class

F◦ of all connected components of the graphs in F , and then apply the above argument to F◦ to get a 2-colorable G0

and a non-2-colorable G1 such that hom(F ◦, G0) = hom(F ◦, G1) for all F ◦ ∈ F◦. By multiplicativity of homomorphism
counts, it follows that hom(F,G0) = hom(F,G1) for all F ∈ F . As a consequence, if H has chromatic number 2, then
CSP(H) is exactly the class of all 2-colorable graphs and hence does not admit any left non-adaptive algorithm.

Finally, it remains to show that if H has chromatic number ≥ 3, then CSP(H) does not admit any left non-adaptive
algorithm. Let H be such a graph and F be any nonempty finite class, our goal is to prove that there are two graphs
G0 ∈ CSP(H) and G1 /∈ CSP(H) such that hom(F,G0) = hom(F,G1) for all F ∈ F . Let n ≥ 2 be an integer greater
than the maximum treewidth of the graphs in F . Since H is not 2-colorable, the class CSP(H) is not definable in the
counting logic Cω

∞ω by the Definable H-Coloring Dichotomy Theorem (see Theorem 11 in [AKW21]), which implies the
existence of two graphs G0 ∈ CSP(H) and G1 /∈ CSP(H) that are indistinguishable by the counting logic Cn and hence,
by Dvořák’s Theorem (see Theorem 7 in [Dvo10]), hom(F,G0) = hom(F,G1) for all graphs F of treewidth ≤ n− 1. The
last condition yields hom(F,G0) = hom(F,G1) for all F ∈ F .

3 Isomorphism and Query Algorithms

In [CFLX21], Chen et al. showed that for every n ∈ N+, two graphs F1 = F1(n), F2 = F2(n) as functions of n can be
constructed so that for all graphs G and H of size n, they are isomorphic if and only if hom(F1, G) = hom(F1, H) and
hom(F2, G) = hom(F2, H). As a result, the isomorphism type of any graph G (viewed as a singleton class) admits a left
3-adaptive-algorithm in which, for input H, the first query hom(I1, H) decides the size of H, followed by the two queries
hom(F1(n), H),hom(F2(n), H) where n := hom(I1, H) = |V (H)| and I1 denotes the single-node graph. This is optimal in
terms of the number of queries made. They also showed that no right adaptive-algorithm can do the job.

In contrast, however, we discovered:

Theorem 2. For every n ∈ N+, a single graph F0 = F0(n) as a function of n can be constructed so that for all graphs G
and H of size n, they are isomorphic if and only if hom(G,F0) = hom(H,F0).

This implies, for any graph G, a hybrid 2-adaptive-algorithm for the singleton class {G} (i.e., the isomorphism type of
G) that consists of the construction of F0 and the set X := {(n,hom(G,F0(n))} where n := hom(I1, G). That is, for input

5Since F ′ consists of connected graphs, the graphs in F ′ \ F ′1 are trees and the graphs in F ′ \ (F ′1 ∪F ′2) are paths. Here paths include the
single-node graph I1.

2

25

graph H, make the two queries m := hom(I1, H) and ` := hom(H,F0(m)) in succession and decide whether (m, `) ∈ X.
Note that this algorithm is already optimal in terms of the number of queries made.

We prove the theorem as follows. First, observe that given D ∈ N+, every sequence (a0, . . . , ak) of fixed length k + 1
in which ai ∈ {0, . . . , D − 1} can be encoded by a unique integer a0 × D0 + · · · + ak × Dk. Now, let n ∈ N+ be given.
Then we let A1, . . . , As enumerate (the isomorphism types of) all graphs of size ≤ n. Our goal is to construct F0 such
that, for a suitable D ∈ N+, certain digits in the D-ary representation of hom(G,F0) are hom(G,A1), . . . ,hom(G,As) for

all graphs G of size n. For this purpose, put F0 :=
s⊕

j=1

(
⊕

Dej
Aj), where e1, . . . , es, D ∈ N+ will be determined later. We

write E+≤n for the set of all integers that are sums of at most n (not necessarily distinct) integers from {e1, . . . , es}. Then
by additivity and multiplicativity of homomorphism counts, if G = G1 ⊕ · · · ⊕ Gr is an arbitrary graph of size n with r
connected components G1, . . . , Gr (1 ≤ r ≤ n), then

(∗)

hom(G,F0) =
r∏

i=1

hom(Gi, F0) =
r∏

i=1

s∑

j=1

hom(Gi, Aj)×Dej

=
∑

e∈E+≤n




∑

j1,...,jr∈{1,...,s}
ej1

+···+ejr
=e

(hom(G1, Aj1)× · · · × hom(Gr, Ajr))


×De.

The two properties will be desirable: (1) the outer summation on the last line of (∗) is the D-ary representation of
hom(G,F0), and (2) for all j ∈ {1, . . . , s}, the digit for Drej in this D-ary representation of hom(G,F0) is hom(G1, Aj)×
· · · × hom(Gr, Aj) = hom(G,Aj).

Next, we determine the values of e1, . . . , es and D to achieve the two desirable properties, based on the (arbitrary) graph
G in the previous paragraph. Let e1 := 1 and ej+1 := nj+nj−1+· · ·+1 for all j ∈ {1, . . . , s− 1}. It follows that ej+1 > nej
for all j ∈ {1, . . . , s− 1} and that e1, . . . , es is a strictly increasing sequence. Hence, it is easy to show that every integer
e ∈ E+≤n can be expressed as a unique summation of at most n (not necessarily distinct) integers from {e1, . . . , es} up to

permutation of the summands; in particular, for every j ∈ {1, . . . , s}, we have rej ∈ E+≤n and the only such summation for
rej is ej + · · ·+ ej︸ ︷︷ ︸

r-times

. Thus, property (2) holds when property (1) also holds, that is, when D is sufficiently large. Writing

Kn for the clique of n nodes, we derive an upper bound on the inner summation on the last line of (∗) for arbitrary e ∈ E+≤n:∑
(hom(G1, Aj1)×· · ·×hom(Gr, Ajr)) ≤∑

(hom(G1,Kn)×· · ·×hom(Gr,Kn)) =
∑

hom(G,Kn) ≤∑
nn ≤ r!×nn ≤ n!nn,

where
∑

is taken over all j1, . . . , jr ∈ {1, . . . , s} with ej1 + · · · + ejr = e and the second last inequality follows from the
previous fact about unique summation up to permutation of summands. Set D := n!nn + 1, then property (1) holds.

Finally, it remains to argue that, given two arbitrary graphs G and H of size n, they are isomorphic if and only if
hom(G,F0) = hom(H,F0). The ‘only if’ direction is trivial. Before we deal with the ‘if’ direction, let us notice that
hom(G,F0) > 0 because hom(G,G) > 0 and G is among A1, · · · , As, which are subgraphs of F0; moreover, the exponents
of D for the nonzero digits in the D-ary representation of hom(G,F0) indicate the number of connected components there
are in G, by the previous fact about unique summation up to permutation of summands (cf. the last line of (∗)). The
same also holds for H. Now, for the ‘if’ direction, assume that hom(G,F0) = hom(H,F0), then they are identical when
expressed in D-ary representation and hence agree on all digits. In particular, they have the same number of connected
components. Furthermore, by property (2), we have hom(G,Aj) = hom(H,Aj) for all j ∈ {1, . . . , s}. It follows from the
characterization result mentioned in Section 1 by Chaudhuri and Vardi that G and H are isomorphic.

References

[AKW21] Albert Atserias, Phokion G Kolaitis, and Wei-Lin Wu. On the expressive power of homomorphism counts. In
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE, 2021.

[CFLX21] Yijia Chen, Jörg Flum, Mingjun Liu, and Zhiyang Xun. On queries determined by a constant number of
homomorphism counts. arXiv preprint arXiv:2111.13269, 2021.

[CV93] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real conjunctive queries. In Proceedings of the Twelfth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1993, pages 59–70, 1993.

[Dvo10] Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330–
342, 2010.

[Lov67] László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3-4):321–
328, 1967.

3

26

DATALOG REDUCTIONS BETWEEN CONSTRAINT
SATISFACTION PROBLEMS

JAKUB OPRŠAL

The constraint satisfaction problem (CSP) is a prototypical NP-complete prob-
lem. Loosely speaking, the goal is given an instance consisting of variables, that
attain values over some (usually finite) domain, and constraints, each involving a
finite number of variables and given by the set of permissible tuples, decide whether
there is an assignment of values to the variables that satisfies all the constraints. A
focus of research in the past years has been to classify the complexity of this problem
depending on the shape of the constraints allowed. This is better explained when
the CSP is expressed as a homomorphism problem: Given two finite structures A
and B in the same relational language, decide whether there is a homomorphism
from A to B. Fixing the structure B, we obtain the problem CSP(B) whose com-
plexity depends on properties of the structure B, e.g., if B is the 3-clique, the
problem is NP-hard, while if relations of B are defined by affine equations over a
finite field, the problem is in P.

Algebraic approach developed by Jeavons et al. [JCG97, BJK05] was the go
to theory for approaching complexity classification of these problems for past few
decades, and it played a key role in Bulatov’s and Zhuk’s celebrated results [Bul17,
Zhu20] that showed that, for any finite B, CSP(B) is NP-hard or in P. In the core,
this theory is usually expressed by claiming that the complexity of the problem
CSP(B) only depends on certain algebraical structure assigned to the template B
that is called polymorphisms of B. In the talk, we would like to shift the focus from
this abstract statement to the structure of reductions between different CSPs. In
that light, the algebraic approach can be seen as a precise classification of existence
of a very clean, structured, and consequently, log-space computable reduction be-
tween two CSPs in terms of polymorphisms of the two involved templates. We call
the reductions coming from this approach pp-replacements.1

The notion of a reduction is fundamental to computational complexity. A reduc-
tion from one problem to another is a (usually efficiently computable) function that
on input gets instances of one problem and outputs instances of another problem
with equivalent answers: for decision problems we require that positive instances
get mapped to positive instances and negative instances get mapped to negative
instances.

In the world of CSPs, pp-replacements were sufficient for a long time for many
classifications. In particular, pp-replacements are enough to provide all NP-hardness

This project has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Com-
mission. The European Union is not liable for any use that may be made of the information
contained therein.

1’pp’ stands for primitive positive.
1

27

2 JAKUB OPRŠAL

(a) pp-replacements (b) local reductions

Figure 1. Boolean CSPs ordered by pp-replacements and local
reductions.

arguments for CSP(B) for a finite B, and hence the hardness side of the dichotomy
conjecture. The need for new and stronger reductions arose from development of
a certain structural-approximation of CSPs—called promise CSPs—which includes
among many other problems approximate graph colouring. In approximate graph
colouring we fix c > k, and ask, given a graph that is promised to be k-colourable, to
find a c-colouring of such a graph. While it is generally believed that this problem
is NP-hard for all c > k ≥ 3, it has only been shown to be NP-hard for some values
of c and k, e.g., c ≥ 3 and k = 2c − 1 [BKO19] (better bounds for c > 5 has been
shown in [WŽ20]). In the world of promise CSP it is known that pp-replacements do
not provide all NP-hardness, i.e., that are NP-hard promise CSPs whose hardness
cannot been shown by reducing from, e.g., 3-SAT by a pp-replacement.

In the talk we will talk about a formalism for a wider class of reductions between
(promise) CSPs that we call local reductions. In short, we extend pp-replacements
with (monotone) Datalog interpretations. Apart from the motivation for promise
CSPs outlined above, we hope that this formalism could bring better insights in
understanding the CSP dichotomy (a.k.a., Bulatov-Zhuk theorem). This is led by
the following observation about Boolean CSPs (which were classified by Schae-
fer [Sch78]). Assuming P ̸= NP, there are only three different classes of Boolean
CSPs if we identified those that are inter-reducible by local reductions: the class
of NP-complete CSPs, the class of XOR-SAT or linear equations over Z2, and the
class of the trivial Boolean CSPs (see Figure 1b). Note that if we considered pp-
replacements, there would still be infinitely many classes—even though the lattice
of them is well understood (see Figure 1a). We also hope that this better under-
standing of CSP dichotomy could lead to a reasonable description of expressibility
of CSPs in some logics. It is likely (though our current argument is not yet fully
rigorous) that local reductions are expressible in Datalog, and hence in fixed point
logic. This means that local reductions are likely to preserve many logical properties
of (promise) CSPs.

We can show some preliminary results about local reductions including:

28

DATALOG REDUCTIONS BETWEEN CONSTRAINT SATISFACTION PROBLEMS 3

• describing a normal form of such a reduction which gives hopes of a possible
classification similar to the classification of pp-replacements, and

• classification of a subclass of local reductions analogous to the arc-consistency
algorithm for CSPs.

Finally, let us finish with a conjecture that is related to several algorithms that
have been recently suggested for (promise) CSPs, namely a Sherali-Adams levels of
Brakensiek-Guruswami algorithm described and classified in [BGWŽ20] and coho-
mological k-consistency described by Adam Ó Conghaile [Con22]. We conjecture
that every finite template CSP that satisfies the (under P ̸= NP necessary) condi-
tion for tractability by Bulatov-Zhuk theorem is locally reducible to solving systems
of linear equations over integers. If this was true, it would immediately give that
both above algorithms and also a simple algorithm based on a combination of local
consistency and solving affine linear equations would solve every tractable CSP, and
it could also lead to showing that tractable finite template CSPs are expressible in
fixed point logic with rank operators—assuming more structural properties of those
CSPs would be investigated.

Acknowledgements. This is a joint work with Victor Dalmau (UPF, Barcelona)
and Marcin Wrochna (University of Warsaw).

References

[BGWŽ20] Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný.
The power of the combined basic LP and affine relaxation for promise CSPs. Elec-
tronic Colloquium on Computational Complexity (ECCC), 27:4, 2020. https://eccc.
weizmann.ac.il/report/2020/004.

[BJK05] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
doi:10.1137/S0097539700376676.

[BKO19] Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise
constraint satisfaction. In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on the Theory of Computing (STOC ’19), New York, NY, USA, 2019. ACM.
doi:10.1145/3313276.3316300.

[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 319–330, Berkeley, CA, USA, October 2017. IEEE. arXiv:1703.03021,
doi:10.1109/FOCS.2017.37.

[Con22] Adam Ó Conghaile. Cohomological k-consistency. (manuscript), Jan 2022. https://
aconghaile.github.io/cohom_consistency.pdf.

[JCG97] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints.
Journal of the ACM, 44(4):527–548, 1997. doi:10.1145/263867.263489.

[Sch78] Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226.
ACM, 1978. doi:10.1145/800133.804350.

[WŽ20] Marcin Wrochna and Stanislav Živný. Improved hardness for H-colourings of G-
colourable graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’20), pages 1426–1435, Salt Lake City, UT, USA, 2020.
SIAM. arXiv:1907.00872, doi:10.1137/1.9781611975994.86.

[Zhu20] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78,
August 2020. doi:10.1145/3402029.

University of Oxford (until 31 May), UK
Email address: math@jakub-oprsal.info

29

Proaperiodic monoids via prime models

Sam van Gool∗

May 27, 2022

This talk is on joint work with Benjamin Steinberg1.

Regular languages of finite words coincide with the sets that are defin-
able in monadic second order logic on finite linear orders [2]. Finite monoids
are algebraic structures, similar to deterministic finite automata, that can
be used to recognize regular languages. Among the finite monoids, a special
role is played by the class Ap of finite aperiodic monoids, i.e., finite monoids
which do not contain any non-trivial subgroups. Finite aperiodic monoids
were shown by Schützenberger, McNaughton and Papert to recognize ex-
actly the sets of finite words that are definable in first-order logic.

Profinite monoids are commonly used as limiting structures for classes
of finite monoids. Indeed, the category of profinite monoids may be defined
as the subcategory of topological monoids consisting of the projective limits
of finite monoids, when we view the latter as discrete spaces. Elements of
profinite monoids may then be seen as limit points of sequences of finite
words with respect to their values in finite monoids. Restricting to the
class of finite aperiodic monoids, proaperiodic monoids are those which are
projective limits of finite aperiodic monoids. They may also be characterized
as the profinite monoids in which, for any element x, the unique idempotent
power in its orbit-closure (xω), is stabilized on the right by x; in an equation:
xω · x = xω. Thus, we obtain a three-way equivalence:

FO-definable ≡ Ap-recognizable ≡ Jxω = xω+1K.

The aim of the work that I will report on in this talk is to combine these
well-known results with methods of first-order model theory, in order to shed
new light on free finitely generated proaperiodic monoids.

∗IRIF, Université Paris Cité, France.
1Department of Mathematics, City College at City University of New York, USA.

1

30

First, in the two papers [3, 4], we showed that free finitely generated
proaperiodic monoids can be usefully understood as topological monoids
of elementary equivalence classes of pseudofinite words, i.e., possibly infi-
nite structures that are models of the first order theory of finite words. In
particular, we showed there that every such elementary equivalence class
contains an ω-saturated member, and that algebraic operations such as con-
catenation, idempotent power, and in fact more generally any substitutions
of structures into others, are well-defined on the ω-saturated models; this
closure under substitutions is related to the Feferman-Vaught theorem of
first-order logic.

Subsequently to our conference publication [3], Almeida et al. [1] gave
an alternative approach to a class of proaperiodic monoids that includes the
free finitely generated ones. Their work explicitly associates a particular
labeled linear order of so-called ‘step points’ to any element of a free finitely
generated proaperiodic monoid. We will show in this talk that this labeled
linear order of step points in fact also admits a model-theoretic interpreta-
tion. Indeed, we show that the linear order of step points is isomorphic to
the prime model for the element, up to a one-point difference.

In the rest of this abstract, we give some more details on an original
proof that any element of a free finitely generated proaperiodic monoid ad-
mits a prime model, which is independent of the results of [1]. From this,
using the general model-theoretic fact that prime models are unique up to
isomorphism, we immediately obtain a new proof of one of the main theo-
rems of [1], which was proved there without model theory, but using rather
involved combinatorial arguments [1, Sec. 11], that we can now circumvent.
For the sake of brevity, we assume some of the notations of [4, 1], and the
model-theoretic definitions and notations of [5].

Theorem 1. Let T be a complete first-order theory extending the first-order
theory of finite words. Then T has a prime model.

Proof (sketch). By model theory (see e.g., [5, Thm. 4.2.10]), it suffices to
prove that, for every n, the set of isolated n-types for T is dense in the
set of all n-types for T . To this end, assume a formula ϕ(x) is consistent
with T . In an ω-saturated model W for T , there is a tuple a such that
W,a |= ϕ(x)∧∀y(y <lex x→ ¬ϕ(y)), i.e., a is the lexicographically minimal
witness of ϕ(x). Here, the relation <lex is the lexicographic order on tuples,
which can be defined from <. The n-type of the tuple a is isolated by the
formula just given.

2

31

Consider an element w of F̂AP(A), the free pro-aperiodic monoid over
A. The category of transitions T (w) of w has as its objects pairs (u, v) ∈
F̂AP(A)2, and morphisms t : (u, v) → (u′, v′) are elements t ∈ F̂AP(A) such
that ut = u′ and tv′ = v. The preorder (u, v) ⪯ (u′, v′) is defined by saying
there exists a morphism (u, v) → (u′, v′) in T (w), and the structure L(w)
defined in [1, Sec. 4] is the quotient of the objects of T (w) by the induced
equivalence relation ≡ defined as ⪯ ∩ ⪰.

Recall that the step points of L(w) are by definition the points that are
either the minimum, maximum, or have a predecessor or successor in the
order. It follows from the proof of [1, Prop. 7.5] that [(u, v)] ∈ L(w) is a step
point if, and only if, the endomorphism monoid of (u, v) in T (w) is trivial.
One may show that the latter happens if, and only if, the type of (u, v) is
isolated. We then obtain the following theorem. Let us denote by L′(w) the
total order L(w) minus its maximum point, (w, 1).

Theorem 2. Let w ∈ F̂AP(A) and let T be the corresponding complete
theory extending the theory of pseudo-finite words. The prime model of T is
isomorphic to the step points of L′(w).

A key result of [1], Theorem 8.7, is that the cluster words Lc(u) and
Lc(v) are isomorphic if and only if u = v. Note that the proof of Theorem
8.7 in [1] relies on the intricate analysis in Sections 9–11. But this is now an
easy consequence of Theorem 2. Indeed, if Lc(u) and Lc(v) are isomorphic,
then this means in particular by Theorem 2 that the prime models for the
theories of u and v are isomorphic, but then the theories are in fact the
same, so u = v.

References

[1] J. Almeida, A. Costa, J. C. Costa, and M. Zeitoun, The linear nature of pseu-
dowords, Publ. Mat. 63 (2019), no. 2, 361–422.

[2] J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundlag. Math. 6 (1960), no. 1-6, 66–92.

[3] S. J. v. Gool and B. Steinberg, Pro-aperiodic monoids via saturated models
(conference version), in: STACS, 2017, pp. 39:1–39:14.

[4] , Proaperiodic monoids via saturated models, Israel J. Math. 234 (2019),
451–498.

[5] D. Marker, Model Theory: An Introduction, Graduate texts in mathematics,
vol. 217, Springer-Verlag New York, 2002.

3

32

Parsing as a lifting problem and
the Chomsky-Schützenberger representation theorem

Paul-André Melliès Noam Zeilberger
IRIF, Université Paris Cité LIX, École Polytechnique
CNRS, Inria, Paris, France Palaiseau, France

Keywords: context-free languages, parsing, finite state automata, category theory,
operads, representation theorem

Building on our work on type refinement systems, we continue developing the
thesis that many kinds of deductive systems may be usefully modelled as func-
tors and derivability as a lifting problem, focusing in this work on derivability in
context-free grammars.

We begin by explaining how derivations in any context-free grammar G may
be naturally encoded by a functor of operads

p : Free S →W[Σ]

from a freely generated operad into a certain “operad of spliced words”. This
motivates the introduction of a more general notion of context-free grammar over
any category C, defined as a finite species S equipped with a color denoting the
start symbol, and a map of species

φ : S →W[C]

into the operad of spliced arrows in C, which induces a unique functor

p : Free S →W[C]

generating a context-free language of arrows in C. Many standard properties
of context-free grammars can be usefully formulated as properties of either the
species S, the map of species φ, or the functor of operads p. We also show that
usual closure properties of context-free languages generalize to context-free lan-
guages of arrows.

One advantage of considering parsing as a lifting problem is that it enables a
dual fibrational perspective on the functor p via the notion of “displayed” operad
p−1 defined as a lax functor of operads W[C] → Span(Set). We show that dis-
played free operads admit an explicit inductive definition and use this to give a

1

33

reconstruction of Leermakers’ generalization of the CYK parsing algorithm. We
then turn to the Chomsky-Schützenberger Representation Theorem. We start by
explaining that a non-deterministic finite state automaton over words, or more
generally over arrows of a category, can be seen as a functor of categories sat-
isfying the unique lifting of factorizations (ULF) property and the finite fiber
property, and how every pair (q0, q f) of initial and final states induces a regu-
lar language of arrows. Then, we explain how to extend this notion of automaton
to functors of operads, which generalize tree automata, allowing us to lift an au-
tomaton over a category to an automaton over its operad of spliced arrows. We
show that every context-free grammar over a category can be pulled back along
a non-deterministic finite state automaton over the same category, and hence that
context-free languages are closed under intersection with regular languages.

The last and important ingredient is the identification of a left adjoint

C[−] : Operad → Cat

to the operad of spliced arrows functor

W[−] : Cat→ Operad

This construction builds the contour category C[O] of any operadO, whose arrows
have a geometric interpretation as “oriented contours” of the operations of O. A
direct consequence of the contour / splicing adjunction is that every finite species
equipped with a color induces a universal context-free grammar, generating a lan-
guage of tree contour words. Finally, we prove a generalization of the Chomsky-
Schützenberger Representation Theorem, establishing that any context-free lan-
guage of arrows over a category C is the functorial image of the intersection of a
C-chromatic tree contour language and a regular language.

An extended abstract has been submitted to the MFPS 2022 conference.

2

34

Monoidal Width
Extended Abstract

Elena Di Lavore and Pawe l Sobociński

Tallinn University of Technology

f g

f ′ g′
=

f g

f ′ g′

Figure 1: Two monoidal decomposi-
tions of the same morphism, the right
one being the cheapest.

Introduction. In applied category theory, monoidal
categories are used as algebras of processes [11, 18, 7].
The assignment of semantics is, typically, a monoidal
functor. The semantics of a process can thus be com-
puted compositionally, but the efficiency of this com-
putation often depends on how a process is decom-
posed, in terms of alternations between compositions
and monoidal products. Different decomposition can
have very different computational costs: in fact, se-
quential compositions typically involve some synchro-
nization or resource sharing along the common boundary, which translates into additional
computational effort, while monoidal products do not involve communication between the two
processes, thus they do not require extra computations (Figure 1).

A second motivation comes from the graph theory literature. Motivated by algorithmic
results [5, 6, 12], several measures of complexity for graphs have been defined [3, 19, 22, 21, 23,
20, 13, 2, 10]. Among these, we will be concerned with tree width [3, 19, 22], path width [21],
branch width [23] and rank width [20]. All of these works rely on various implicit algebras of
graph decomposition. Our goal is to make them explicit as particular monoidal categories.

We define monoidal decompositions (Definition 1) and the notion of monoidal width (Def-
inition 3). We then report four results relating monoidal width and two variations with path
width, tree width, branch width and rank width (Table 1). The details can be found in [17, 16].

Monoidal Width is the cost of the most efficient decomposition of a morphism into its
atomic components, thus capturing—intuitively—its intrinsic structural complexity.

Definition 1 (Monoidal decomposition). Let C be a monoidal category and A be a subset of
its morphisms referred to as atomic. The monoidal decompositions Df of f : A→ B in C are:

Df ::= (f) if f ∈ A
| (d1, ⊗, d2) if d1 ∈ Df1 , d2 ∈ Df2 and f =C f1 ⊗ f2

| (d1, ;X , d2) if d1 ∈ Df1 : A→X , d2 ∈ Df2 : X→B and f =C f1 ; f2

To calculate the cost of a decomposition, each operation and each atomic morphism is asso-
ciated with a number, which we call weight. Roughly speaking, sequential composition is priced
according to the size of the object the composition occurs over, while monoidal products are
free. Finally, the weight of an atom is the application-specific cost of computing its semantics.

Definition 2. Let C be a monoidal category and let A be a set of atoms. A weight function is
a function w : A ∪ {⊗} ∪ Obj(C)→ N such that w(X ⊗ Y) = w(X) + w(Y), and w(⊗) = 0.

35

Monoidal Width E. Di Lavore and P. Sobociński

Definition 3 (Monoidal width [17]). Let w be a weight function for (C,A). Let f be in C and
d ∈ Df . The width of d is defined recursively as follows:

wd(d) := w(f) if d = (f)

max{wd(d1),wd(d2)} if d = (d1, ⊗, d2)

max{wd(d1), w(X), wd(d2)} if d = (d1, ;X , d2)

The monoidal width of f is mwd(f) := mind∈Df
wd(d). Restricting the operations allowed in

decompositions to (i) precompositions with atoms and monoidal products or (ii) only composi-
tions, we obtain: (i) monoidal tree width, mtwd, and (ii) monoidal path width, mpwd.

Monoidal Width Meets Graph Widths. Path width [21] and tree width [22] intuitively
measure the difficulty of decomposing a graph into subgraphs forming a path and tree shape,
respectively. On the other hand, branch width [23] and rank width [20] intuitively measure the
difficulty of decomposing a graph into one-edge and one-vertex subgraphs, respectively.

In the case of path, tree and branch width, the subgraphs are obtained by “cutting” the
original graph along its vertices. The right algebra to capture these decompositions is that
given by cospans of graphs [24, 14], where the composition of two cospans is by pushout, which
glues graphs along the vertices in their common boundary.

In the case of rank width, instead, the subgraphs are obtained by “cutting” the original
graph along its edges. The correct algebra to capture rank width is, then, that given by a
prop of graphs with dangling edges [9, 15]. This prop is more linear algebraic in nature, with
adjacency matrices and matrix algebra playing a central role.

To back these claims, we established the results in Table 1, where G := ∅ → G ← ∅ is
the cospan associated to a graph G and [G] is its corresponding graph with dangling edges.

pwd(G) = mpwd(G) = pwd(G) ([17], Theorem 45)

twd(G) ≤ mtwd(G) ≤ 2 · twd(G) ([17], Theorem 41)
1
2 · bwd(G) ≤ mwd(G) ≤ bwd(G) + 1 ([17], Theorem 49)
1
2 · rwd(G) ≤ mwd([G]) ≤ 2 · rwd(G) ([16], Theorem 5.12)

Table 1: Summary of the results

Conclusions and future work. Monoidal width measures the complexity of decomposing
morphisms in monoidal categories. By identifying the correct algebras of decomposition, this
framework allows us to capture path width, tree width, branch width and rank width.

We want to establish a result similar to Courcelle’s theorem [12], relating logical expressibil-
ity with efficient recognisability in families of morphisms with bounded monoidal width. We are
also working on capturing other graph widths such as clique [13], twin [8] and cut width [2, 10],
and generalisations of tree width to directed graphs [4] and relational structures [1].

References

[1] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model
theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE, 2017.

2

36

Monoidal Width E. Di Lavore and P. Sobociński

[2] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied Mathematics,
25(3):403–423, 1973.

[3] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. J. Comb. Theory,
Ser. A, 14(2):137–148, 1973.

[4] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdržálek. The dag-
width of directed graphs. Journal of Combinatorial Theory, Series B, 102(4):900–923, 2012.

[5] Hans L Bodlaender. A tourist guide through treewidth. Technical report, 1992.

[6] Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008.

[7] Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. A survey of compositional signal flow theory.
In Michael Goedicke, Erich J. Neuhold, and Kai Rannenberg, editors, Advancing Research in
Information and Communication Technology, volume 600 of IFIP Advances in Information and
Communication Technology, pages 29–56. Springer, 2021. doi:10.1007/978-3-030-81701-5_2.

[8] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width i:
tractable fo model checking. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 601–612. IEEE, 2020.

[9] Apiwat Chantawibul and Pawe l Sobociński. Towards compositional graph theory. Electronic Notes
in Theoretical Computer Science, 319:121–136, 2015.

[10] Maria Chudnovsky and Paul Seymour. A well-quasi-order for tournaments. Journal of Combina-
torial Theory, Series B, 101(1):47–53, 2011.

[11] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes - A first course in Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press, 2017.

[12] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

[13] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

[14] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe l Sobociński.
A canonical algebra of open transition systems. In Gwen Salaün and Anton Wijs, editors, Formal
Aspects of Component Software, pages 63–81, Cham, 2021. Springer International Publishing.

[15] Elena Di Lavore, Jules Hedges, and Pawe l Sobociński. Compositional modelling of network games.
In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

[16] Elena Di Lavore and Pawe l Sobociński. Monoidal Width: Capturing Rank Width, 2022. arXiv:

2205.08916.

[17] Elena Di Lavore and Pawe l Sobociński. Monoidal Width: Unifying Tree Width, Path Width and
Branch Width, 2022. arXiv:2202.07582.

[18] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on
sufficient statistics. Advances in Mathematics, 370:107239, 2020.

[19] Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186, 1976.

[20] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006.

[21] Neil Robertson and Paul D. Seymour. Graph minors. I. excluding a forest. Journal of Combina-
torial Theory, Series B, 35(1):39–61, 1983.

[22] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal
of algorithms, 7(3):309–322, 1986.

[23] Neil Robertson and Paul D. Seymour. Graph minors. X. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[24] Robert Rosebrugh, Nicoletta Sabadini, and Robert FC Walters. Generic commutative separable
algebras and cospans of graphs. Theory and applications of categories, 15(6):164–177, 2005.

3

37

From profinite words to profinite λ-terms

Vincent Moreau, IRIF, Université Paris Cité

This is joint work with Sam van Gool and Paul-André Melliès.

The aim of this work is to combine methods from profinite algebra and models
of the λ-calculus to obtain a notion of profinite λ-term. Profinite algebraic
structures have been used in automata theory for giving classifications of regular
languages, see e.g. [2] for a survey. In particular, elements of the free profinite
monoid are known as profinite words. They provide a way to speak about
limiting behavior of finite words with respect to deterministic automata. In
order to connect this notion of profiniteness to the λ-calculus, we generalize from
usual automata models to the computation model of higher-order automata [4,
1]. Indeed, higher-order automata generalize automata of words and trees, in
that they can process arbitrary simply-typed λ-terms as their input. Existing
notions of automata on words and trees are then obtained as a special case
through Church encoding.

Our main contribution here is the study of the notion of parametric λ-term,
parametric in the sense of Reynolds [3] and relatively to any model of the simply-
typed λ-calculus, and the establishment of a link with profinite words. We first
consider a model constructed from finite sets and functions, which corresponds
to deterministic automata. We prove that in that setting, the notion of para-
metric λ-term essentially coincides with the classical notion of profinite word.
However, when we move for example from functions to relations, which corre-
sponds to the move from deterministic to non-deterministic automata, we will
obtain a new notion of ‘non-deterministically profinite’ λ-term. The abstract
point of view that we introduce here will thus allow us, in future work, to in-
vestigate parametric λ-terms for other models, obtaining a new landscape of
generalizations of profinite words.

In the remainder of this abstract, we will describe our work in more technical
detail.

Let Σ be a finite alphabet. A profinite word over Σ is a family u = (up), where p
ranges over the surjective monoid homomorphisms p : Σ∗ ↠ M , with M a finite
monoid, such that, for every p, up is an element of the range of p, and for any
monoid homomorphism f : M → N , with N a finite monoid,

uf◦p = f(up).

1

38

Every finite word w ∈ Σ∗ yields a profinite word (wp) by defining wp to be p(w),
for each p : Σ∗ ↠ M . However, there exist many profinite words that do not
come from finite words: for example, for any letter a ∈ Σ, denote by up is the
unique idempotent power of p(a) in the finite monoid M , for each p : Σ∗ ↠ M .
Then (up) is a profinite word, which is usually denoted by “aω” and does not
arise from a finite word.

The first step towards the definition of parametric λ-terms is the following al-
ternative characterization of profinite words. Let us define a monoidal relation
from M to N to be a submonoid of M × N . It can be shown that, for any
p : Σ∗ ↠ M , q : Σ∗ ↠ N , R a monoidal relation from M to N , and u a profinite
word,

if, for all w ∈ Σ∗, p(w) R q(w), then up R uq.

Conversely, any family (up) which verifies this condition is a profinite word.

The second step is to see how words may be encoded within the simply-typed
λ-calculus. Recall that the untypes λ-terms are those generated by the grammar

M,N ::= x | λx.M | MN.

A simple type (with one type variable o) is a term generated by the grammar

A,B ::= o | A ⇒ B.

Let Γ be a context, namely a set of pairs x : A consisting of a variable and of a
simple type. A λ-term M has type A in context Γ iff the judgment Γ ` M : A
can be derived in the system sith the three following typing rules

Γ, x : A ` x : A
Γ ` M : B ⇒ A Γ ` N : B

Γ ` MN : A

Γ, x : A ` M : B

Γ ` λx.M : A ⇒ B

When a λ-term M is closed, i.e. when every occurring variable is bound by a
λ-abstraction, we say that M has type A if ∅ ` M : A is derivable.

As an example, we consider the two letter alphabet {a, b}. For any word w =
a1 . . . an ∈ {a, b}∗, one can derive the typing judgment in the simply-typed
λ-calculus

a : o ⇒ o, b : o ⇒ o, c : o ` a1(. . . (anc)) : o.

It follows that the closed term λa.λb.λc.a1(. . . (anc)) has type

(o ⇒ o) ⇒ (o ⇒ o) ⇒ (o ⇒ o).

In general, any word w ∈ Σ∗ can be encoded in this way as a closed term having
type

ChurchΣ := (o ⇒ o) ⇒ . . . ⇒ (o ⇒ o)︸ ︷︷ ︸
|Σ| times

⇒ (o ⇒ o).

The third step is to consider logical relations in the sense of Reynolds [3]. As the
category FinSet of finite sets and functions is cartesian closed, we can interpret

2

39

the simply-typed λ-calculus in it. Given a set P and defining JoKP := P ,
structural induction on simple types yields a set JAKP for every simple type
A. We extend this interpretation of types by defining, for every binary relation
R between P and Q, the binary relation JAKR between JAKP and JAKQ in the
following way: we let JoKR be R itself and define, for any simple types A and
B, the set JA ⇒ BKR to be

{(f, g) ∈ JA ⇒ BKP × JA ⇒ BKQ | ∀(p, q) ∈ JAKR, (f(p), g(q)) ∈ JBKR}.

We now state the central definition of this work that we investigate in the case
of finite models.

Definition. A parametric λ-term of type A is a family of elements (θQ), where
Q ranges over all finite sets, such that θQ ∈ JAKQ, and for any binary relation
R between finite sets P and Q, we have θP JAKR θQ.

We note that we have only given the definition for the category of finite sets
and relations, but this same definition applies in any cartesian closed double
category D.

When A is taken to be ChurchΣ, θQ can be seen as a function from J(o ⇒ o)|Σ|KQ
to Jo ⇒ oKQ, and the parametricity condition then becomes, for all families
(pa)a∈Σ : P → P and (qa)a∈Σ : Q → Q

if, for all a ∈ Σ, (pa, qa) ∈ Jo ⇒ oKR, then (θP , θQ) ∈ Jo ⇒ oKR.

Now, any profinite word induces a parametric λ-term in FinSet by choosing
the monoid M to be Q → Q with the composition. On the other hand, any
parametric λ-term θ in FinSet induces a profinite word defined as

[Σ∗,M] −→ M
p 7−→ θ(iM◦p)(em)

where iM is the Cayley injection of M into M → M . These two functions
indeed yield profinite words and parametric λ-terms. Moreover, we prove the
following, by making crucial use of the notion of parametricity with respect to
relations.

Theorem. The functions between profinite words and parametric λ-term in
FinSet are mutually inverse.

References
[1] Paul-André Melliès. “Higher-order parity automata”. In: LICS 2017.
[2] Jean-Eric Pin. “Profinite Methods in Automata Theory”. In: STACS 2009.
[3] John C. Reynolds. “Types, Abstraction and Parametric Polymorphism”.

In: IFIP Congress 1983.
[4] Sylvain Salvati. “Recognizability in the Simply Typed Lambda-Calculus”.

In: Logic, Language, Information and Computation. Springer Berlin Hei-
delberg, 2009, pp. 48–60.

3

40

Indexed complexity classes

Siddharth Bhaskar

Structure meets Power 2022—Extended Abstract

1 Structure, power, and indexings

Abstractly, a programming language is a set P of programs, a set D of a data, and a ternary
semantics relation of type P×D×D, where [[p]](x) = w is interpreted as “program p terminates
on input x with output w.” Following [5], a programming language is grounded if programs
can be interpreted as data, namely P ⊆ D. Henceforth, we restrict ourselves to grounded
programming languages.

From this vantage, the power of a programming language can be identified with the class
of functions (or relations, or partial functions . . .) it computes, whereas its structure can
be thought of as its theory in the first order language of [[]]. No doubt this is a very coarse
conception of structure; however, it suffices to express nontrivial structural properties of the
programming language, such as whether it admits syntactic composition.1

For Turing complete languages, power and structure are almost completely independent.
That is to say, all reasonable Turing complete programming languages have the same [[]]-theory.2

The situation for non-Turing complete programming languages is much better (or worse, de-
pending on your perspective). Here, there is the possibility that different indexings of the same
complexity class possess genuinely different structural properties. This affords the possibility
of interplay between the structure and expressive power of a programming language.

There is one significant qualitative difference between indexings of partial recursive functions
and of any complexity class: namely, the existence of a universal program u which satisfies the
property [[u]](p, x) = [[p]](x) for any program p and datum x.3 Any non-pathological indexing
of the partial recursive functions must contain a universal function, however, an indexing of a
complexity class cannot, by a standard diagonalization argument.

On the other hand, there are natural axioms which an indexing of a complexity class can
satisfy. Kozen [7] identifies three such simple axioms with short formal statements4 Kozen shows
that these axioms have certain familiar consequences; for example, any indexing satisfying them
must satisfy Kleene’s second recursion theorem.5

It is already an interesting question to ask: which complexity classes satisfy these three
axioms? But more suggestively, Kozen suggests that indexings of some complexity classes
obey conservation of structure: the more “synthesizing” programs a language admits (such as

1I.e., whether there is a program which takes as input the codes of two programs computing functions f and
g and returns the code of a program computing f ◦ g.

2In recursion theoretic lingo, this is simply to say that all acceptable universal indexings of partial recursive
functions are recursively isomorphic.

3We silently assume a bit more structure on our data, viz., the existence of a pairing function ⟨·, ·⟩ : D2 → D.
4Two of which are the admission of parallel and sequential syntactic composition.
5Namely, (∀p ∈ P)(∃q ∈ P)(∀d ∈ D) [[p]](q, d) = [[q]](d). Note that in the absence of a universal program,

Kleene’s recursion theorem is different from Roger’s fixpoint theorem, which will not hold in any indexed com-
plexity class.

1

41

a syntactic composer), the more complex it must be to uniformly simulate a program in that
language. He then proves it for a particular family of indexings of Ptime.

We feel that this is a fascinating open question, squarely in the realm of “structure meets
power,” viz., to be powerful, must a programming language be structurally complex? But besides
raising it, we have nothing to say about this matter. Rather, the point of this example is that
studying indexings of complexity classes can be a powerful tool for examining structure-power
relationships.

2 Subrecursion theory meets ICC

One criticism of these questions is that they are no longer in vogue: recursion-theoretic tech-
niques are not as big a part of complexity theory as they once were, and the study of indexings
of complexity classes (or, to use the older terminology, subrecursive indexings), mostly fizzled
out by the 1980’s.

We believe that, on the contrary it is high time to revisit the theory of subrecursive in-
dexings in light of the proliferation of new examples from the field of implicit computational
complexity, or ICC, from the 1990’s onward. Before then, most non-Turing complete languages
captured primitive recursive functions, or at least an initial segment of the Grzegorczyk hierar-
chy. Indexings of complexity classes lower than Elementary were usually obtained by families
of clocked Turing machines.

Now, by contrast, we have a slew of indexings of Ptime, Pspace, and other “small” classes,
obtained by techniques like tiered recursion, linear typing discipline, cons-free computation,
among others [4, 6, 8, 9]. What indexings of their respective complexity classes do they induce?
Are these indexings isomorphic to those obtained by clocked Turing machines, or genuinely
new? Can we quantify their complexity?

Not only are these new examples from the perspective of subrecursion theory, but these are
(we believe) new questions from the perspective of ICC.

3 A test case: speedup phenomena

We conclude by describing one specific technical question which we have taken some preliminary
steps towards.

The [[]]-theory of a programming language can be refined by expanding it with another
ternary predicate, namely the Blum relation Φp(x) ≤ t, defined by “program p on input x
terminates in time (or space, or other resource) at most t.”6 The resulting theory captures yet
more structural properties of the original programming language than its [[]]-theory.

Blum complexity theory is an extension of classical recursion theory which studies indexings
of partial recursive functions expanded by a recursive Blum relation [3]. This framework is
general enough to describe almost any model of computation with almost any resource bound.
From these simple axioms, we get powerful results like the speedup theorem, which asserts, for
any recursive function f , the existence of problems X which can always be sped up by a factor
of f .7 Crucially, speedup phenomena imply lower bounds, e.g., if a problem can be sped up by
a quadratic factor, then it cannot be solved in polynomial time.

Blum’s theory relies on the machinery of primitive recursive indexings, for example the
existence of universal programs. Is there any way to recover a Blum-like theory for an indexed

6Of course, this requires that we identify numbers, or whatever we use to measure cost, as a subset of D.
7I.e., for any program solving X, there is a an f -faster program solving X.

2

42

complexity class which lacks such machinery? Surprisingly, the answer is yes. Alton [1] shows
that sometimes all we need is a simulation function, namely a program Sim satisfying

[[Sim]](p, x, t) = [[p]](t) if Φp(x) ≤ t.

In other words, we can evaluate a given program on a given input if we are also given the upper
bound for the running time as a parameter.

The program we would like to suggest is to look for speedup phenomena within non-Turing
complete programming languages. To get off the ground we need to find indexings of complexity
classes which admit efficient simulation functions. By studying cons-free programs, we have
found an indexing of Ptime with a Pspace simulating function; this shows that such indexings
exist (or at least that their existence is hard to refute).

It also suggests that we can locate speedup phenomena within cons-free programs. Since
cons-free running time is closely related to boolean circuit depth [2], which is the basis for many
interesting classes between Logspace and Ptime we might hope to prove something like the
following.

Conjecture. If Ptime=Pspace, then the NC hierarchy is strict.

The path to showing speedup and related Blum phenomena involves structural work; namely,
showing the existence of various efficient synthesizing functions for cons-free programs.

References

[1] D. A. Alton. “Natural” Programming Languages and Complexity Measures for Subrecursive
Programming Languages: An Abstract Approach, page 248–285. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1980.

[2] S. Bhaskar, C. Kop, and J. G. Simonsen. Subclasses of ptime interpreted by programming
languages. Theory of Computing Systems, 2022. (Forthcoming).

[3] M. Blum. A machine-independent theory of the complexity of recursive functions. J. ACM,
14(2):322–336, Apr. 1967.

[4] M. Hofmann. The strength of non-size increasing computation. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’02,
page 260–269. Association for Computing Machinery, 2002. ISBN 1581134509.

[5] N. D. Jones. Computability and complexity from a programming perspective. London: MIT
Press, 1997. ISBN 0-262-10064-9.

[6] N. D. Jones. Logspace and ptime characterized by programming languages. Theoretical
Computer Science, 228(1):151 – 174, 1999.

[7] D. Kozen. Indexing of subrecursive classes. In Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing, STOC ’78, page 287–295, New York, NY, USA, 1978.
Association for Computing Machinery.

[8] D. Leivant. Ramified recurrence and computational complexity i: Word recurrence and
poly-time. In Feasible Mathematics II, pages 320–343. Birkhäuser Boston, 1995.

[9] J. Marion. A type system for complexity flow analysis. In 2011 IEEE 26th Annual Sympo-
sium on Logic in Computer Science (LICS 2011), pages 123–132, 2011.

3

43

Compositionality and Proof Complexity ∗

Gabriel Istrate†

May 25, 2022

1 Introduction

Proofs in propositional proof systems are often compositional : if P,Q,R are
propositions such that P |= Q and Q |= R, π1 is a propositional proof for
P |= Q and π2 is a propositional proof of Q |= R then one can often ”compose”
π1 and π2 to obtain a proof π1 ◦ π2 for P |= R. For instance, for resolution
composition refers simply to the concatenation of the two proofs.

This simple fact, combined with the simple fact that many complexity mea-
sures c are also compositional, that is for any two proofs π1, π2, c(π1 ◦ π2)
depends in a well behaved manner on c(π1), c(π2)1, can be used to prove the
existence of efficient propositional proofs of unsatisfiability for various proposi-
tional encodings of combinatorial statements.

This strategy (that we have first employed in [2] to prove the existence of
quasi-polynomial size Frege proofs for the Kneser-Lovász theorem) was further
exploited in [1] to prove the existence of polynomial (or quasi-polynomial, in
some cases) Frege and extended Frege proofs for a variety of propositional en-
codings of various combinatorial principles, such as

- Schrijver’s theorem [3], a generalization of the Kneser-Lovász theorem2

- vertex coloring.

- dual graph coloring.

- edge clique cover

- hitting set

- the Arrow and Gibbard-Satterthwaite theorems from the theory of social
choice.

∗Based on work [1] presented at ICALP 2021 (with Cosmin Bonchiş and Adrian Crãciun)
and related, subsequent work-in-progress by the author of this presentation

†West University of Timişoara and the e-Austria Research Institute, Timişoara, Romania,
email: gabrielistrate@acm.org

1e.g., for resolution size, c(π1 ◦ π2) ≤ c(π1) + c(π2)
2For some recent applications of our proof strategy for this result see [4]

1

44

Our strategy was to use the existence of a chain of reductions provided by
the concepts of data reduction/kernelization from parameterized complexity [5]:

Definition 1 A parametrized problem over alphabet Σ is a set L ⊆ Σ∗ × N.
Let L be a parametrized problem. A data reduction rule for L is an

algorithm A that maps (in time polynomial in |x| + k) an instance (x, k) of L
to an instance (x′, k′) such that (x, k) ∈ L iff (x′, k′) ∈ L (we say that the two
instances are equivalent, or that the reduction rule is safe), and |x′| ≤ |x|.

A kernelization algorithm (or, shortly, kernelization) Ker for the problem
L is an algorithm that works as follows: on input (x, k), Ker outputs (in time
polynomial in |(x, k)|) a pair (x′, k′), such that the following are true: (x, k) ∈
L iff (x′, k′) ∈ L, and |x′|, k′ ≤ g(k), where g is a computable function. Pair
(x′, k′) is called the kernel of (x, k), while g(k) is called the size of the kernel.

The length of a kernelization provided by a data reduction matters for ob-
taining applications to proof complexity. This is encapsulated by the following

Metatheorem 1 Let L be a parameterized problem that is kernelizable via a
finite number of data reduction rules (A1, A2, . . . , Ar) with kernel size g(·).

1. Assume that negative instance (x, k) of L has a data reduction chains of
length C(x, k), and that the soundness of each reduction rule A1, A2, . . . , Ar

can be witnessed using extended Frege proofs of size at most h(|Φ(x, k)|),
for some function h(·). Then L has extended Frege proofs of size

O((
C(x,k)∑
i=0

Ri)[h(|Φ(x, k)|) + 2O(poly(g(k)))]). In particular, if R = 1 and for

every fixed k we have C(x, k) = O(poly(|Φ(x, k)|)) then, for every fixed k,
negative instances Φ(x, k) of L have extended Frege proofs of size polyno-
mial in |Φ(x, k)|.

2. Assume that negative instances (x, k) of L have data reduction chains
of length C(x, k) = O(1) (O(log(|Φ(x, k)|)), respectively), where the con-
stant may depend on k, and that the safety of each reduction Φ(xi, ki) `
Φ(xi+1, ki+1) is witnessed by Frege proofs of size ≤ p(|Φ(x, k)|), for some
fixed polynomial p(·) Then for every fixed k, negative instances (Φ(x, k), k)
of L have Frege proofs of size polynomial (quasipolynomial) in |Φ(x, k)|.

In the present talk:

- We aim to explain some of the technical details of our results in [1], in-
cluding the novel data reductions of small length for the problems above.

- Time permitting, we will present subsequent work-in-progress. This work
encompasses two directions:

1. First, the application of a different technique from the theory of pa-
rameterized complexity, that of iterative compression [6].

2

45

2. Second, we discuss applications to proof system other than Frege
and extended Frege. Our main target is the class of proof systems
based on clause redundancy recently introduced in the SAT solving
community [7, 8], specifically the proof system SPR−.[9]. These are
proof systems for which the logical equivalence of formulas gener-
ated through the proof is not guaranteed. Instead, these formulas
are only equisatisfiable with original formulas. Such proof systems
have important practical advantages, and the issue of guaranteeing
efficient proofs in them is an important one.

References

[1] Gabriel Istrate, Cosmin Bonchiş, and Adrian Crãciun. Kernelization, proof
complexity and social choice. In Nikhil Bansal, Emanuela Merelli, and
James Worrell, editors, 48th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scot-
land (Virtual Conference), volume 198 of LIPIcs, pages 135:1–135:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[2] James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crăciun, and
Gabriel Istrate. Short proofs of the Kneser–Lovász coloring principle. In-
formation and Computation, 261:296–310, 2018.

[3] A. Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch.
Wiskd., III. Ser., 26:454–461, 1978.

[4] Ishay Haviv. A fixed-parameter algorithm for the Schrijver problem. arXiv
preprint arXiv:2204.09009, 2022.

[5] Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ker-
nelization: theory of parameterized preprocessing. Cambridge University
Press, 2019.

[6] Fedor Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket
Saurabh. Iterative compression and exact algorithms. Theoretical Computer
Science, 411(7-9):1045–1053, 2010.

[7] Marijn Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof
systems. Journal of Automated Reasoning, 64(3):533–554, 2020.

[8] Marijn Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. PRun-
ing through satisfaction. In Haifa Verification Conference, pages 179–194.
Springer, 2017.

[9] Neil Thapen and Sam Buss. DRAT and propagation redundancy proofs
without new variables. Logical Methods in Computer Science, vol. 17, issue
2, 2021.

3

46

	Adam Ó Conghaile: A sheaf-theoretic approach to (P)CSPs
	Amar Hadzihasanovic: Data structures for topologically sound higher-dimensional diagram rewriting
	Damiano Mazza: A Categorical Approach to Descriptive Complexity Theory
	Gabriel Goren: Path Predicate Modal Logic and its Comonadic Semantics
	Jade Master: How to Compose Shortest Paths
	Tim Seppelt: Recent Advances in Homomorphism Indistinguishability
	Peter Hines: Coherence, conjectures, and congruential functions
	Wei-Lin Wu: Query Algorithms Based on Homomorphism Counts
	Jakub Opršal: Datalog reductions between constraint satisfaction problems
	Sam van Gool: Proaperiodic monoids via prime models
	Paul-André Melliès: Parsing as a lifting problem and the Chomsky-Schutzenberger representation theorem
	Pawel Sobocinski: Monoidal Width
	Vincent Moreau: From profinite words to profinite lambda-terms
	Siddharth Bhaskar: Indexed complexity classes
	Gabriel Istrate: Compositionality and Proof Complexity

