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The four projects listed here will contribute to the Accelerate Programme for Scientific Discovery, an interdisci-
plinary research team that uses machine learning to solve scientific problems. Students working on these projects
will help facilitate the use of machine learning techniques in Physics, Chemistry and Materials Science.

The QM9 challenge: learning quantum chemistry from small dataset
All molecules and materials on Earth can be described by the Schrödinger equation, but the computational cost of

solving the equation makes this prohibitive. Machine learning (ML) has emerged as a promising tool to circumvent
the high cost of quantum mechanical calculations, by performing statistical learning of relatively few examples, and
then making speedy and accurate predictions about other materials and molecules. Such tool will vastly enhance
our capability to explore the astronomically large chemical space, and accelerate chemical discovery.

Before any practical use, a ML for chemistry model needs to be validated. The most common benchmark dataset
for this is called QM9, which consists of 134k smallest organic molecules containing up to 9 heavy atoms (C, O,
N, or F; excluding H) along with their quantum properties. Several ML studies have already been published using
QM9 (see Figure 1, Ref [1]). A popular challenge is to develop a next-generation ML model that can learn the
quantum mechanical energy of the organic molecules with higher accuracy using less training data. This may be
done by improving the representations of molecules, or by employing smarter training algorithms. It is quite likely
that the next improvement will stem from a combination of supervised and unsupervised learning, e.g. first learn the
representations using an unsupervised model, and then perform regression.

Figure 1: Models shown differ by representation and architecture. The black X denotes the “QM9 challenge” of
achieving 1 kcal/mol accuracy on the QM9 dataset using only 100 molecules for training. Figure from Ref. [2].

In this project, you will first learn about the state-of-the-art ML models for quantum chemistry, and then you will
have the chance to tackle this “QM9 challenge”. It is worth noting that the ML models and the skills are transferable
to predicting other chemical or biological properties of materials and molecules, including drug-likeness, catalytic
activities, and optical properties.
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Measuring the mutual information content between different descriptors of materials and
molecules

Machine learning (ML) of atomic-scale properties is revolutionizing computational physics and chemistry, by en-
abling accurate predictions without performing expensive quantum mechanical calculations. The accuracy, efficiency
and reliability of these ML models, however, depends strongly on the choice of descriptors used as input for the ML
method.

Many descriptors have been proposed in the past to represent molecular and material structures. Generally
speaking, a good representation should be invariant to translation and rotation, as well as the permutation of atoms
of the same species. Amongst these, the Atom Centered Symmetry Functions (ACSFs) [1] and the Smooth Overlap
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of Atomic Positions (SOAP) [2] descriptors are probably the most popular ones. Many descriptors share a common
theoretical foundation (e.g. most descriptors that are based on the atomic density differ only in the basis functions
onto which the density is projected [3]), and often behave rather similarly. As an example, Figure 2 shows the
principal component analysis (PCA) maps of the QM9 dataset (a popular benchmark set in chemistry that contains
134k small molecules of up to 9 heavy atoms) based on the SOAP and ACSF descriptors. Despite the distinct forms
and the two orders of magnitude difference in the dimensionalities of the two types of descriptors, the commonalities
in their PCA maps can be spotted.

Figure 2: PCA maps of the QM9 database using the SOAP descriptors (left) and the ACSFs (right). Each point
indicates a small organic molecule in the dataset.

This project focuses on investigating how these existing descriptors (different types of descriptors as well as de-
scriptors of the same type but with different hyper parameters) are related in terms of their mutual information content.
The methodology can be a theoretical analysis of the mathematical formulations of the descriptors. Alternatively, non-
parametric measurements of the mutual information content between a pair of descriptors on benchmark datasets
(e.g. QM7b, QM9) can be performed. The insights coming from this project will contribute to our understanding of
how to best represent atomic systems when using ML models, help formulating next-generation descriptors, and
ultimately make an impact on the ML for chemistry revolution.
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Learning how atoms interact

Figure 3: A comparison between different
ways of computing the potential energy sur-
face.

The holy grail of computational physics and chemistry is to predict
material properties by solving the fundamental equations of quan-
tum mechanics (called “ab initio” methods). However, as illustrated
in Figure 3, ab initio calculations are computationally demanding
such that these calculations are restricted to small system sizes (∼
100 atoms) and short simulation time (∼ 10−12 s), making them un-
practical for modelling most systems. On the other hand, inexpen-
sive empirical forcefields (i.e. using simple functions to approximate
atomic interactions) may not be available for many systems or may
lack quantitative accuracy.

Machine learning (ML) has emerged as a way to sidestep the ab
initio calculations, using a small number of reference evaluations to
generate a data-driven model of the atomic interactions. The field of
ML potentials is young but extremely dynamic. Thus far, ML potentials have been constructed for systems including
small organic molecules, bulk condensed materials and interfaces [1]. As a recent example, we constructed a ML
potential for high-pressure hydrogen, and revealed how hydrogen gradually turns into a metal in giant planets [2].

In this project, you will train a ML potential for a technologically important system. For example, titanium dioxide
has unique optical and photocatalytic properties, and certain high-pressure hydrides are high temperature super-
conductors. In addition, you will learn a number of techniques for curating the training set, including sparsification
(CUR and FPS), dimensionality reduction, and clustering. The outcome of the project will not only contribute to the
understanding of the system of study, but also help building a general and automated workflow for constructing ML
potentials.
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Using ML to construct a coarse-grained model for water

Figure 4: A schematic of a fully atomistic and a coarse-
grained (CG) representation of molecular water.

Water, as the substrate in which life occurs, is per-
haps the most important chemical compound around.
Modelling water accurately and efficiently is of crucial
importance in simulating pure water, solutions, bio-
chemical systems, and many reactions happening in
water.

A straightforward way of making a model for water
is to treat each oxygen or hydrogen atom separately,
and subsequently compute the interactions between
atoms during simulations. To speed up the computa-
tion, one can employ a coarse-grained (CG) model in
which each H2O molecule is represented by a single
particle. Coarse-graining is a way to enhance both the
time and size of simulations that we can perform. Many approaches for coarse-graining have been developed [1],
but designing the functional form for a CG potential often rely on human insights as well as trail-and-error processes.

In this project, you will construct a CG model of water, using a highly accurate atomisitic neural network potential
of water [2] as the reference. Two recent works [3, 4] used machine-learning approaches for coarse graining, but
they only work at a fixed temperature and pressure condition and do not account for nuclear quantum effects (NQEs)
of light elements such as hydrogen. This project will expand the existing methodology, so the resulting CG model
can be transferable to other thermodynamic conditions, and will include NQEs. Such a high quality CG model for
water will be extremely useful for understanding the unique behaviors of water, and for modelling biological systems.
References
[1] Marissa G. Saunders and Gregory A. Voth. “Coarse-Graining Methods for Computational Biology”. In: 42 (2013),

pp. 73–93. ISSN: 1936-122X. DOI: 10.1146/annurev-biophys-083012-130348.

[2] Bingqing Cheng? et al. “Ab initio thermodynamics of liquid and solid water”. In: Proceedings of the National
Academy of Sciences 116.4 (2019), pp. 1110–1115.

[3] S. T. John and Gábor Csányi. “Many-Body Coarse-Grained Interactions Using Gaussian Approximation Poten-
tials”. In: The Journal of Physical Chemistry B 121.48 (Nov. 2017), pp. 10934–10949. DOI: 10.1021/acs.jpcb.
7b09636.

[4] Linfeng Zhang et al. “DeePCG: Constructing coarse-grained models via deep neural networks”. In: 149 (2018),
p. 034101. ISSN: 0021-9606. DOI: 10.1063/1.5027645.

3

https://sites.google.com/site/tonicbq/
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1038/s41586-020-2677-y
https://doi.org/10.1146/annurev-biophys-083012-130348
https://doi.org/10.1021/acs.jpcb.7b09636
https://doi.org/10.1021/acs.jpcb.7b09636
https://doi.org/10.1063/1.5027645

