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ABSTRACT
The glass ceiling effect has been defined in a recent US Fed-
eral Commission report as “the unseen, yet unbreakable bar-
rier that keeps minorities and women from rising to the up-
per rungs of the corporate ladder, regardless of their qualifi-
cations or achievements”. It is well documented that many
societies and organizations exhibit a glass ceiling. In this
paper we formally define and study the glass ceiling effect in
social networks and propose a natural mathematical model,
called the biased preferential attachment model, that par-
tially explains the causes of the glass ceiling effect. This
model consists of a network composed of two types of ver-
tices, representing two sub-populations, and accommodates
three well known social phenomena: (i) the “rich get richer”
mechanism, (ii) a minority-majority partition, and (iii) ho-
mophily. We prove that our model exhibits a strong mo-
ment glass ceiling effect and that all three conditions are
necessary, i.e., removing any one of them will prevent the
appearance of a glass ceiling effect. Additionally, we present
empirical evidence taken from a mentor-student network of
researchers (derived from the DBLP database) that exhibits
both a glass ceiling effect and the above three phenomena.
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1. INTRODUCTION
Attaining equality of opportunity is a fundamental value in

democratic societies, therefore existing inequalities present
us with a major concern. A particularly sore example is
that many highly-qualified women and members of minority
groups are unable to realize their full potential in society
(and specifically in the workforce) due to a phenomenon
commonly referred to as the glass ceiling, a powerful visual
image for an invisible barrier blocking women and minorities
from advancing past middle management levels [20]. This
concern was raised in a recent US Federal commission report
[18]:

The “glass ceiling”... is the unseen, yet unbreak-
able barrier that keeps minorities and women from
rising to the upper rungs of the corporate ladder,
regardless of their qualifications or achievements.

The existence of the glass ceiling effect is well documented
[8, 16, 30]. In academia, for example, gender disparities
have been observed in the number of professors [34], earn-
ings [13, 34, 40] funding [29] and patents [10]. A recent
study [26] analyzed gender differences in research output, re-
search impact and collaborations based on Thomson Reuters
Web of Science databases. When prominent author posi-
tions were analyzed by sole authorship, first-authorship and
last-authorship, it was discovered that papers with women
in those leading roles were less frequently cited. The ques-
tion we focus on in this article concerns the causes of this
phenomenon. What are the invisible mechanisms that com-
bine to create the glass ceiling effect, and in particular, what
is the role of the social network in creating this effect? Many
papers discuss possible causes of the glass ceiling effect and
potential solutions to it, e.g., [9, 15, 24], but to the best
of our knowledge, the present work is the first attempt to
study it in the context of the social network structure and to
propose a mathematical model capturing this phenomenon.

The paper’s main contributions are the following. (1) We
propose a model for bi-populated social networks extending
the classical preferential attachment model [2], and augment
it by including two additional basic phenomena, namely, a
minority-majority partition, and homophily. (2) We propose
a formal definition for the glass ceiling effect in social net-
works. (3) We rigorously analyze this extended model and
establish its suitability as a possible mechanism for the emer-
gence of a glass ceiling effect. We also show that omitting
any one of the three ingredients of our model prevents the
occurrence of a glass ceiling effect. (4) We present empirical



evidence for a network exhibiting preferential attachment,
minority-majority partition, homophily, and a glass ceiling
effect.

In order to talk about the glass ceiling effect we have to
agree on a measure of success in a social network. Following
the traditional approach that sees network edges as the “so-
cial capital” of the network, we define successful members of
a social network to be high degree vertices, namely, vertices
that maintain a large number of connections, correspond-
ing to high influence. We base our model on a bi-populated
network augmented by three well-accepted observations on
human behavior, namely (i) the“rich get richer”mechanism,
(ii) minority-majority partition (with a slower growth rate
of the minority group in the network), and (iii) homophily
(affinity towards those similar to oneself). The main result
of the paper is that under these three simple and standard
assumptions the glass ceiling effect naturally arises in so-
cial networks. Let us first briefly describe these three social
phenomena.

The “rich get richer” mechanism. This mechanism
describes and explains the process of wealth concentration.
It follows the basic idea that newly created wealth is dis-
tributed among members of society in proportion to the
amount they have already amassed. In our setting, where
the degree of the vertex captures its level of social wealth,
this mechanism predicts that people may try to connect
more often to people who already have many connections,
either in order to profit from their social wealth or because
they are more visible in the network.

Minority-majority partition. Many social groups ex-
hibit unequal proportions of men and women. Certain oc-
cupations, such as construction, law enforcement, politics
and computer science, tend to have a higher proportion of
men. For example, the ratio of women taking up studies in
the computing discipline varies per year and region between
10% and 35% [3, 21, 38, 44]. Other professions, such as
elementary school teaching, nursing, and office administra-
tion, are occupied by a higher proportion of women. In fact,
it is difficult to find an occupation with a balanced ratio
of genders (this also holds for many other social partitions,
e.g., ones based on ethnicity or family background). This
imbalance is the second phenomenon underlying our model.

Homophily. It is a well established social phenomenon
that people tend to associate with others who are similar to
themselves. Characteristics such as gender, ethnicity, age,
class background and education influence the relationships
among human beings [27] and similarities make communi-
cation and relationship formation easier.

In summary, our model is obtained by applying the classi-
cal preferential attachment model (see Barabasi and Albert
[2]) to a bi-populated minority-majority network augmented
with homophily. The resulting model is hereafter referred to
as the Biased Preferential Attachment Model.

Roadmap. The rest of the paper is organized as follows.
In the next section we review related work, then in Sec-
tion 3 we introduce the model and the formal definitions of
the involved properties: glass ceiling, power inequality and
homophily tests. In Section 4 we state our two main theo-
rems, and in Section 5 we provide empirical evidence for the
existence of all our necessary ingredients and for the glass
ceiling effect in a student-mentor network of researchers in
computer science. We conclude with a discussion.

2. RELATED WORK
Homophily in social networks. Different characteris-

tics, such as gender, ethnicities, age, class background and
education, influence the relationships human beings form
with each other [27]. McPherson et al. [32] survey a vari-
ety of properties and how they lead to particular patterns
in bonding. Gender-based homophily can already be ob-
served in play patterns among children at school [31, 41].
Eder and Hallinan [12] discovered that young girls are more
likely to resolve intransitivity by deleting friendship choices,
while young boys are more likely to add them. Overall,
children are significantly more likely to resolve intransitivity
by deleting a cross-sex friendship than by adding another
cross-sex friendship [45]. These results show that gender in-
fluences the formation of cliques and larger evolving network
structures. These trends, displaying homophily and gender
differences in resolving problems in the structure of relation-
ships, mean that boys and girls gravitate towards different
social circles. As adults, homophilic behavior persists, and
men still tend to have networks that are more homophilic
than women do. This behavior is even more pronounced in
areas where they form the majority and in relationships ex-
changing advice and based on respect, e.g., mentoring [5, 22,
23, 39]. A homophilic network evolution model was studied
in [4]. In this model new nodes connect to other nodes in
two phases. First, they choose their neighbors with a bias
towards their own type (the model allows a positive as well
as a negative bias). In a second phase they make an unbi-
ased choice of neighbors from among the neighbors of their
biased neighbors. The authors show that the second phase
overcomes the bias in the first phase and if the second phase
is unbiased, then the network ends up in an integrated state.
They illustrate their model with data on citations in physics
journals.

Gender disparity in science and technology. Gen-
der disparities have been observed in the number of profes-
sors [13, 34], earnings [40], funding [29] and patenting [10].
A related aspect is the “productivity puzzle”: men are more
successful when it comes to number of publications and
name position in the author list [46], for reasons yet un-
clear. Some conjectures raised involve (unknown) biased
perceptions related to pregnancy/child care [6]. E.g., it was
observed in [34] that science faculty members of both sexes
exhibit unconscious biases against women. Gender differ-
ences in research output, research impact and collabora-
tions was analyzed in a study based on Thomson Reuters
Web of Science databases [26]. It was not only revealed
that papers with women in prominent author positions (sole
authorship, first-authorship and last-authorship) were cited
less frequently but the authors also found that age plays an
important role in collaborations, authorship position and ci-
tations. Thus many of the trends observed therein might be
explained by the under-representation of women among the
elders of science. In other words, fixing the“leaky pipeline”[43]
is key for a more equal gender distribution in science.

Minority of women in Computer Science. In the
computing discipline, the ratio of women taking up stud-
ies varies by year and region between 10% and 35% [3,
21, 38, 44] ( except in Malaysia, where women form a nar-
row majority [35]). This under-representation has been in-
vestigated [19, 42, 47] and remedial strategies have been
propoesd [17, 37]. There is a positive feedback loop [25]:
the lack of women leads to a strong male stereotype which



minority & homophily: no minority: no homophily: absolute homophily:
r = 0.3, ρ = 0.7 r = 0.5, ρ = 0.7 r = 0.3, ρ = 1 r = 0.3, ρ = 0

(a) (b) (c) (d)

Figure 1: Examples of the Biased Preferential Attachment (BPA) model with various parameter settings.
All examples depict a 300-vertex bi-populated network generated by our BPA model starting from a single
edge connecting a blue and a red vertex (with vertex size proportional to its degree).

drives away even more women. It’s been explained that the
increase of the relative number of women in computer science
was the best of the investigated remedial strategies, up to a
“critical mass” of women. However, as pointed out by Et-
zkowitz [14], even achieving a representation of 15% women
might not guarantee that the effects of a critical mass come
into play.

3. MODEL AND DEFINITIONS

3.1 Biased preferential attachment model
Our first contribution is in proposing a simple bi-populated

preferential attachment model. In a gist, our model is ob-
tained by applying the classical preferential attachment model
[2] to a bi-populated minority-majority network augmented
with homophily. The resulting model is hereafter referred
to as the Biased Preferential Attachment Model. Formally,
for r ≤ 1/2 and 0 ≤ ρ ≤ 1 let G(n, r, ρ) be a variant of the
preferential attachment model in which the vertices are red
or blue, n is the total number of nodes, and r represents
the relative arrival rate of the red vertices (and hence the
expected fraction of red vertices in the network converges
to r as well, as the relative size of the initial population be-
comes smaller over time), and ρ represents the level to which
homophily (incorporated by using rejection sampling) is ex-
pressed in the system: for ρ = 1 the system is uniform and
exhibits no homophily, whereas for ρ = 0 the system is fully
segregated, and all added edges connect vertex pairs of the
same color.

Let us describe the model in more detail. Denote the so-
cial network at time t by Gt = (Vt, Et), where Vt and Et,
respectively, are the sets of vertices and edges in the network
at time t, and let δt(v) denote the degree of vertex v at time
t (we may omit the parameter t when it is clear from the
context). The process starts with an arbitrary initial (con-
nected) network G0 in which each vertex has an arbitrary
color, red or blue. (For simplicity we require that a minimal
initial network consists of one blue and one red vertex con-
nected by an edge, but this requirement can be removed if
ρ > 0). This initial network evolves in time as follows. In
every time step t a new vertex v enters the network. This
vertex is red with probability r and blue with probability
1 − r. On arrival, the vertex v chooses an existing vertex

u ∈ Vt to attach to according to preferential attachment, i.e.,
with probability p proportional to u’s degree at time t, i.e.,
P [u is chosen] = δt(u)/

∑
w∈Vt

δt(w). Next, if u’s color is the

same as v’s color, then an edge is inserted between v and u;
if the colors differ, then the edge is inserted with probability
ρ, and with probability 1 − ρ the selection is rejected, and
the process of choosing a neighbor for v is restarted. This
process is repeated until some edge {v, u} has been inserted.
Thus in each time step, one new vertex and one new edge
are added to the existing graph.

Figure 1 presents four examples of parameter settings for
our model on a 300-vertex bi-populated social network. First,
Figure 1(a) provides an example for the minority & ho-
mophily case with r = 0.3 and ρ = 0.7 so the red vertices
are a strict minority in the network and there is some ho-
mophily in the edge selection. The next three sub-figures
present special cases. Figure 1(b) illustrates the no minority
case (equal-size populations, i.e., r = 0.5) with homophily
(ρ = 0.7). Figure 1(c) considers the no homophily case
(ρ = 1) with minority (r = 0.3). The last extreme case,
shown in Figure 1(d), is absolute homophily, where ρ = 0,
but the red vertices are still in the minority (r = 0.3). This
case results in fully segregated societies, namely, societies
where members connect only to members of their own color.
In this extreme case, the society in effect splits into two sep-
arate networks, one for each of the two populations (except
for the single edge connecting the initial red and blue ver-
tices).

Consider as an example for our model the social network of
mentor-student relationships in academia. With time, new
PhD students arrive, but for some fields female students ar-
rive at a lower rate than male students. Upon arrival, each
student needs to select exactly one mentor, where the selec-
tion process is governed by the mechanisms of preferential
attachment and homophily. Namely, initially the student
selects the mentor according to the rules of preferential at-
tachment and then homophily takes its role, rejecting the
selection with some probability if their gender is different
and forcing a re-selection. Over time, graduated students
may become mentors and some mentors become more suc-
cessful than others (in terms of the number of students they
advise). A glass ceiling effect can be observed in this net-



work if, after a long enough time interval, the fraction of
females among the most successful mentors tends to zero.

We would like to emphasize that the homophily effect that
we look at is quite minor and “seemingly harmless”, in two
ways. First, it is “symmetric”, i.e., it applies both to male
students with respect to female mentors and to female stu-
dents with respect to male mentors. Second, it does not
adversely affect the student, in the sense that the student
always gets admitted in our model. The only tiny (but omi-
nous) sign for the potential dangers of this homophilic ef-
fect is that it does affect the professor: a male professor
who rejects (or is rejected by) some fraction of the female
candidates risks little, whereas a female professor who re-
jects (or is rejected by) some fraction of the male candidates
will eventually have fewer students overall, since most of
the applicants are male. In fact, as we show later on, this
homophily-based consequence will only impact her if her fu-
ture potential students use preferential attachment to select
their mentors.

3.2 Power inequality and glass ceiling
Our second contribution is to propose formal definitions

of the glass ceiling effect in social networks. Consider a bi-
populated network G(n) consisting of m edges and n nodes
of two types, the groups R and B of red and blue nodes.
We assume that the network size n tends to infinity with
time. Let n(R) and n(B) denote the number of red and blue
nodes, respectively, where n(R) + n(B) = n. The red nodes
are assumed to be a minority in the social network, i.e.,
denoting the percentage of red nodes in the network by r,
we assume 0 ≤ r < 1

2
. Let d(R) and d(B) denote the sum

of degrees of the red and blue nodes, respectively, where
d(R)+d(B) = 2m. Let topk(R) (respectively, topk(B)) denote
the number of red (resp., blue) nodes that have degree at
least k in G. When G(n) is a random graph, we replace
variables by their expectations in the definitions below, e.g.,
we use E[n(R)], E[d(R)], and E[topk(R)]. Next we provide
formal definitions for the social phenomena discussed in the
introduction. Power inequality for the minority is defined in
the following way.

Definition 1 (Power inequality). A graph sequence
G(n) exhibits a power inequality effect for the red nodes if
the average power of a red node is lower than that of a blue
(or a random) node, i.e., there exists a constant c < 1 such
that

lim
n→∞

1
n(R)

∑
v∈R δ(v)

1
n(B)

∑
v∈B δ(v)

=
d(R)/n(R)

d(B)/n(B)
≤ c . (1)

The definition of the glass ceiling effect is more complex.
We interpret the most powerful positions as those held by
the highest degree nodes, and offer two alternative defini-
tions. The first tries to capture the informal, “dictionary”
definition, which describes a decreasing fraction of women
among higher degree nodes, i.e., in the tail of the graph
degree sequence. Formally:

Definition 2 (Tail glass ceiling). A graph sequence
G(n) exhibits a tail glass ceiling effect for the red nodes if
there exists an increasing function k(n) (for short k) such
that limn→∞ topk(B) =∞ and

lim
n→∞

topk(R)

topk(B)
= 0 .
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Figure 2: (a) An example bi-populated social net-
work with blue and red populations of 6 and 4 ver-
tices respectively. (b) The degree sequences of both
populations (i.e., the sequence specifying for each
vertex its degree in the network). Considering the
tail glass ceiling definition, there are four blue ver-
tices of degree greater or equal to 4, but only two
such red vertices so top4(R)/top4(B) = 1/2. For the
moment glass ceiling definition, the second moment
for the blue vertices is 1

6
(82+72+52+42+32+32) = 28.6,

while for the red vertices it is 1
4
(72 + 52 + 32 + 32) = 23

and the ratio is 23/28.6. To exhibit a glass ceil-
ing, these ratios should converge to zero as the net-
work size increases. Regarding homophily, in a ran-
dom network with the same population, i.e., 60%
blue vertices and 40% red vertices, one expects to
find 36% blue-blue edges, 16% red-red edges and 48%
mixed edge. If we take the degree sequences into ac-
count we would expect to see 46.8% mixed edge. In
the above example network we observe only about
33% mixed edges, which indicates the effect of ho-
mophily.

The second definition considers a more traditional, distribution-
oriented measure, the second moment of the two degree se-
quences. Formally:

Definition 3 (Moment glass ceiling). A graph se-
quence G(n) exhibits a moment glass ceiling g for the red
nodes where

g = lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2

.

When g = 0, we say that G(n) has a strong glass ceiling ef-
fect. The intuition behind this definition is that a larger sec-
ond moment (and assuming a similar average degree, i.e., no
power inequality) will result in a larger variance and there-
fore a significantly larger number of high degree nodes. As
we show in the full version of the paper, the above two def-
initions for the glass ceiling are independent, in the sense
that neither of the effects implies the other.

Testing for homophily in a bi-populated network is based
on checking whether the number of mixed (i.e., red-blue)
edges is significantly lower than to be expected if neighbors
were to be picked randomly and independently of their color.
Formally:

Definition 4 (Homophily Test). [11] A bi-populated
social network exhibits homophily if the fraction of mixed
edges is significantly less than 2r(1− r).



The above definition implicitly assumes that there is power
equality between the colors and therefore is not always ac-
curate. A more careful test should take the average degree
of each gender into account.

Definition 5 (Normalized Homophily Test). A bi-
populated social network exhibits homophily if the fraction of

mixed edges is significantly less than 2 d(R)
2m

(
1− d(R)

2m

)
.

An illustration of these definitions can be found in Figure 2.

4. THEORETICAL RESULTS

4.1 Power inequality and glass ceiling
Our main theoretical result (Thm. 4.1) is that in the

biased preferential attachment model, G(n, r, ρ), the glass
ceiling effect emerges naturally. Additionally, this process
generates a power inequality, an independent property that
is weaker than the glass ceiling effect. Power inequality de-
scribes the situation where the average degree of the minor-
ity is lower than that of the majority (although their mem-
bers possess the same qualifications). Moreover, we also
show (Thm. 4.2) that all three ingredients (unequal entry
rate, homophily, preferential attachment) are necessary to
generate what we call a strong glass ceiling effect, i.e., re-
moving any one of them will prevent the appearance of a
glass ceiling effect. One may suspect that the glass ceiling
effect is in fact a byproduct of power inequality or unequal
qualifications; we show in the full paper that this is not the
case. Minorities can have a smaller average degree without
suffering from a glass ceiling effect. We also note that our
results are independent of the starting condition. Even if the
network initially consisted entirely of vertices of one color,
if a majority of the vertices being added are of the opposite
color, then eventually the vertices that rise to the highest
positions will be of the new color.

Theorem 4.1. Let 0 < r < 1
2

and 0 < ρ < 1. For
G(n, r, ρ) produced by the Biased Preferential Attachment
Model the following holds:

1. G(n, r, ρ) exhibits power inequality, and

2. G(n, r, ρ) exhibits both a tail and a strong glass ceiling
effects.

Moreover, all three ingredients are necessary to generate
a strong glass ceiling effect.

Theorem 4.2. 1. G(n, r, ρ) will not exhibit a glass ceil-
ing effect in the following cases:

(a) If the rate r = 1
2

(no minority).

(b) If ρ = 1 (no homophily)

(c) If ρ = 0 (no heterophily).

2. G(n, r, ρ) will not exhibit a strong glass ceiling effect
if attachment is uniform rather than preferential, i.e.,
a new vertex at time t selects an existing vertex to
attach to uniformly at random from all vertices present
at time t− 1 (and for any value of r and ρ).

Let us graphically illustrate the above results. Figure 3
presents the degree distributions of both the red and blue

populations (as well as of the entire population) for four
1,000,000-vertex networks with parameters identical to the
examples in Figure 1. The plots clearly show (and we prove
this formally) that in all cases the degree distribution of both
populations follows a power-law. (A subset W of vertices
in a given network obeys a power-law degree distribution
if the fraction P (k) of vertices of degree k in W behaves
for large values of k as P (k) ∼ k−β for parameter β.) All
figures present (in log-log scale) the cumulative degree dis-
tributions, so a power-law corresponds to a straight line (we
present the samples together with the best-fit line). The-
orem 4.1 corresponds to Figure 3(a) with the minority &
homophily settings of 0 < r < 1

2
and 0 < ρ < 1. In this

case (and only in this case), the power-law exponents of the
red and blue populations, β(R) and β(B) respectively, are
different, where β(R) > β(B); we prove that this will eventu-
ally lead to both tail and strong glass ceiling effect for the
red vertices. Theorem 4.2 corresponds to Figures 3(b) and
3(c). The figures show that in the case of no minority (i.e.,
r = 0.5) or no homophily (i.e., ρ = 1), both β(R) and β(B)
are the same (in particular they are equal to 3 as in the clas-
sical Preferential Attachment model), and therefore there
will be no glass ceiling effect. Figure 3(d) considers the last
extreme case of absolute homophily. Perhaps surprisingly, in
this case a glass ceiling effect also does not occur, as each
sub-population forms an absolute majority in its own net-
work (see again Figure 1(d)). The case of no preferential
attachment (which does not lead to a glass ceiling) is more
delicate and presented in the full version of the paper.

Proof Overview of Theorem 4.1. The basic idea be-
hind the proof of Theorem 4.1 is to show that both pop-
ulations in G(n, r, ρ) have a power law degree distribution
but with different exponents. Once this is established, it
is simple to derive the glass ceiling effect for the popula-
tion with a higher exponent in the degree distribution. To
study the degree distribution of the red (and similarly the
blue) population, we first define αt to be the random vari-
able that is equal to the ratio of the total degree of the red
nodes (i.e., the sum of degrees of all red nodes) divided by
the total degree (i.e., twice the number of edges). We show
that the expected value of αt converges to a fixed ratio in-
dependently of how the network started. The proof of this
part is based on tools from dynamic systems. Basically, we
show that there is only one fixed point for our system. How-
ever, determining the expectation of αt is not sufficient for
analyzing the degree distribution, and it is also necessary to
bound the rate of convergence and the concentration of αt
around its expectation. We used Doob martingales for this
part. Using the high concentration of the total degree, we
were able to adapt standard techniques to prove the power
law degree distribution. Next we give an overview of the
proofs and the helping lemmas, but due to space limitations
we defer the details to the full version of this paper.

4.2 Proof sketch of Theorem 4.1 Part 1
An urn process. The biased preferential attachment

model G(n, r, ρ) process can also be interpreted as a Polya’s
urn process, where each edge in the graph corresponds to
two balls, one for each endpoint, and the balls are colored
by the color of the corresponding vertices. When a new (red
or blue) ball y arrives, we choose an existing ball c from
the urn uniformly at random; if c is of the same color as y,
then we add to the urn both y and another ball of the same
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Figure 3: Graphical illustrations of our formal claims concerning the glass ceiling effect in the Biased Pref-
erential Attachment model. Each figure presents the degree distribution (on a log-log scale) of the red and
blue populations from a 1,000,000-vertex network generated by the BPA model with the same parameters as
the corresponding figure in Figure 1. In all cases both populations exhibit a power-law degree distribution
but only in case (a) they with different exponents.

color as c; otherwise (i.e., if c is of a different color), with
probability ρ we still add to the urn both y and another ball
of the same color as c, and with probability 1− ρ we reject
the choice of c and repeat choosing an existing ball c′ from
the urn uniformly at random. To analyze power inequality,
there is no need to keep track of the degrees of individual
vertices; the sum of the degrees of all vertices of R is exactly
the number of red balls in the urn.

Denote by dt(R) (respectively, dt(B)) the number of red
(resp., blue) balls present in the system at time t ≥ 0.
Altogether, the number of balls at time t is dt = dt(R) +
dt(B). Initially, the system contains do balls. Noting that
exactly two balls join the system in each time step, we have
dt = do + 2t. Note that while dt(R) and dt(B) are random
variables, dt is not. Recall that balls represent degrees so
dt =

∑
w∈Vt δt(w).

Denote by αt the random variable equal to dt(R)/dt, the
fraction of red balls in the system at time t.

Convergence of expectations. We first claim that the
process of biased preferential attachment converges to a ratio
of α red balls in the system. More formally, we claim that
regardless of the starting condition, there exists a limit

α = lim
t→∞

E[αt] .

Lemma 4.3. E[αt+1|αt] = αt+
F (αt)− αt

t+ 1
, where

F (x) =

(
1− (1− r) (1− x)

1− x(1− ρ)
+ r

x

1− (1− x)(1− ρ)

)
/2.

Lemma 4.4. 1. F is monotonically increasing.

2. F has exactly one fixed point, denoted α∗, in [0, 1].

3. The image of the unit interval by F is contained in the
unit interval: F ([0, 1]) =

[
r
2
, 1+r

2

]
⊂ [0, 1]

4. If x < α∗ then x < F (x) < α∗ and if x > α∗ then
x > F (x) > α∗.

5. α∗ < r.

Now assume αt < α∗. By Lemma 4.4, αt < F (αt) < α∗, so
by Lemma 4.3 we obtain αt < E[αt+1|αt] < α∗.

Moreover we can bound the rate of convergence and show:

Lemma 4.5. |α∗ − E[αt]| = O(1/ 3
√
t).

Theorem 4.6. For any initial configuration, as t goes to
infinity, the expected fraction of red balls in the urn, E(αt),
converges to the unique α∗ in [0, 1] satisfying the equation

2α∗ = 1−(1−r) (1− α∗)
1− α∗(1− ρ)

+r
α∗

1− (1− α∗)(1− ρ)
. (2)

Hence the limit α∗ is the solution of the cubic equation
Eq. (3).

(4ρ− 2ρ2 − 2)α3 + (2 + 3ρ2 − 5ρ+ 2r − 2rρ)α2 (3)

+(2ρ− 2r + 2rρ− ρ2)α− rρ = 0

Note that this limit is independent of the initial values do
and α0 of the system.

We know that the expected degree of a random vertex
is 2 and since the expected degree of a red vertex tends to
2α∗/r, which is strictly less than 2 (because of Lemma 4.4
Part 5), we can claim:

Corollary 4.7. Let 0 < ρ < 1, 0 < r < 1/2. Then
G(n, r, ρ) has a power inequality effect.

4.3 Proof sketch of Theorem 4.1 Part 2
Concentration. To prove the glass ceiling effect we first

bound the degree distribution. To do this we need to bound
the rate by which dt(R) converge to α · t. Let Xi ∈ {0, 1, 2}
be the number of new red balls in the system at time i. Note
that dt(R) =

∑t
0Xi. Let

Ψi = EXi+1,Xi+2,...,Xt

[ t∑
j=0

Xj |X1, X2, . . . , Xi
]
.

Observe that (Ψi)i is a Doob Martingale [33], and note that

Ψ0 = E
[∑t

i=0Xi
]

= E
[
dt(R)

]
.

Theorem 4.8 (Azuma’s inequality [1]). Let Ψt be a
martingale such that for all i, almost surely |Ψi−Ψi−1| < ci.
Then for all positive t and all positive reals x,

Pr(Ψt −Ψ0 ≥ x) ≤ exp

(
−x2

2
∑
i c

2
i

)
.

Lemma 4.9. Let Ci = |Ψi −Ψi−1|. Then Ci = O(
√
t/i).



For simplicity of the description, let us assume hereafter
that do = 0, hence αt = dt(R)/(2t). By Theorem 4.8 and
Lemma 4.9 we have

Lemma 4.10. Pr
[
|dt(R)−2tE(αt)| > O(2

√
t log t)

]
≤ 1

t4
.

Combining Lemmas 4.5 and 4.10 yields:

Corollary 4.11.

Pr

[
|α∗ − αt| > max

{
2 log t√

t
,

1
3
√
t

}]
<

1

t4
.

Degree distribution. We investigate the degree distri-
bution of the red and blue vertices in a graph generated by
the above described process, following the analysis outline
of [7] for the basic preferential attachment model.

Let mk,t(B) (resp., mk,t(R)) denote the number of blue
(resp., red) vertices of degree k at time t. For x ∈ {R, B},
define

Mk(x) = lim
t→∞

E(mk,t(x))

t
. (4)

Theorem 4.12. The expected degree distributions of the
blue and red vertices follow a power law, namely, Mk(B) ∝
k−β(B) and Mk(R) ∝ k−β(R). If 0 < r < 1/2 and 0 < ρ < 1
then β(R) > 3 > β(B).

Equipped with Theorem 4.12, Part 2 of Theorem 4.1 fol-
lows easily. Indeed, for the tail glass ceiling effect, let k(n) =

n
1
β(R) . Then

E[topk(R)] = n(R)
∑
k′≥k

Mk′(R) ,

E[topk(B)] = n(B)
∑
k′≥k

Mk′(B).

For k′ = n
1
β(R) we have nMk′(R) = O(n · n−

β(R)
β(R) ) = O(1)

while nMk′(B) = Ω

(
n · n−

β(B)
β(R)

)
= Ω(n

1− β(B)
β(R) ) = Ω(nε)

for ε > 0. The result then follows since n(R) < n(B) and
Mk′(R) < Mk′(B) for k′ > k.

For the moment glass ceiling effect we can show similarly:

g = lim
n→∞

∑
k2Mk(R)∑
k2Mk(B)

= lim
n→∞

O(n3−β(R))

Ω(n3−β(B))

= lim
n→∞

O

(
1

nε′

)
= 0

for some ε′ > 0.
The rest of this section sketches a proof of Theorem 4.12.

Note that m0,0(B) = do(B). We derive a recurrence for
E(mk,t(B)). A blue vertex of degree k at time t could have
arisen from three scenarios: (s1) at time t−1 it was already
a blue vertex of degree k and no edge was added to it at
time t. (s2) at time t−1 it was a blue vertex of degree k−1
and an edge was added to it at time t. (s3) in the special
case where k = 1, at time t − 1 it did not exist yet and it
has arrived as a new blue vertex at time t. Thus letting Ft
be the history of the process up to time t, for any k > 1, the
expectation of mk,t+1(B) conditioned on Ft satisfies

E(mk,t+1(B)|Ft) =

mk,t(B)

(
1−

rdt(B)ρ
k

dt(B)

dt(R)+dt(B)ρ
−

(1−r)dt(B) k
dt(B)

dt(R)ρ+dt(B)

)
+ mk−1,t(B)

(
rdt(B)ρ

k−1
dt(B)

dt(R)+dt(B)ρ
+

(1−r)dt(B) k−1
dt(B)

dt(R)ρ+dt(B)

)
.

For k = 1 we similarly have

E(m1,t+1(B)|Ft) =

m1,t(B)
(

1− ρr
dt(R)+dt(B)ρ

− 1−r
dt(R)ρ+dt(B)

)
+ (1− r) .

Recalling again that αt = dt(R)/(2t), the above can be
rewritten as

E(mk,t+1(B)|Ft) =

mk,t(B)
(

1− rρk
2t(αt+(1−αt)ρ) −

(1−r)k
2t(αtρ+(1−αt))

)
+ mk−1,t(B)

(
rρ(k−1)

2t(αt+(1−αt)ρ) + (1−r)(k−1)
2t(αtρ+(1−αt))

)
and for k = 1,

E(m1,t+1(B)|Ft) =

m1,t(B)
(

1− ρr
2t(αt+(1−αt)ρ) −

1−r
2t(αtρ+(1−αt))

)
+ (1− r).

This can be expressed as

E(mk,t+1(B)|Ft) = mk,t(B)

(
1−At

k

t

)
(5)

+mk−1,t(B)At
k − 1

t
,

E(m1,t+1(B)|Ft) = m1,t(B)

(
1− At

t

)
+ (1− r), (6)

using the notation

At =
rρ

2αt + 2(1− αt)ρ
+

(1− r)
2αtρ+ 2(1− αt)

.

Note that At is a random variable so we next bound its
divergence. Let

CB =
rρ

2α+ 2(1− α)ρ
+

(1− r)
2αρ+ 2(1− α)

CR =
(1− r)ρ

2(αρ+ 1− α)
+

r

2(α+ (1− α)ρ))
.

We have

Lemma 4.13. Pr

[
|At − CB| > max

{
2 log t√

t
,

1
3
√
t

}]
<

1

t4
.

A similar claim can be made for CR. This enables us to
establish the following.

Lemma 4.14.

• M1(B) exists and equals (1− r)/(1 + CB),

• For k ≥ 2, Mk(B) exists and equals
Mk−1(B) · (k − 1)CB/(1 + kCB),

• M1(R) exists and equals r/(1 + CR), and

• For k ≥ 2, Mk(R) exists and equals
Mk−1(R) · (k − 1)CR/(1 + kCR),

It is possible to show the following about CB and CR:

Lemma 4.15.

• If 0 < r < 1/2 and 0 < ρ < 1 then CR <
1
2
< CB

• If r = 1/2 then CR = CB = 1/2.

• If ρ = 0 or ρ = 1 then CR = CB = 1/2.



To show that the degree distributions of both the red and
the blue vertices follow power laws we recall that a power
law distribution has the following property: Mk ∝ k−β for
large k, where β is independent of k. If Mk ∝ k−β , then

Mk

Mk−1
=

k−β

(k − 1)−β
=

(
1− 1

k

)β
= 1− β

k
+O

(
1

k2

)
.

Solving for the blue vertices, Mk(B) and the blue exponent
β(B), and using Lemma 4.14, we get:

Mk(B)

Mk−1(B)
=

(k − 1) · CB

1 + k · CB

= 1− CB + 1

k · CB + 1

= 1−
1 + 1

CB

k
+O

(
1

k2

)
hence β(B) = 1 + 1/CB. Similarly, for red vertices of degree
k, Mk(R) decays according to a power law with exponent
β(R) = 1 + 1/CR. Note that when CR <

1
2
< CB we have

β(R) > 3 > β(B) thus proving Theorem 4.12.

5. EMPIRICAL OBSERVATIONS
To provide empirical evidence illustrating the results of

our analysis in real-life, we studied a mentor-student network
of researchers in computer science, extracted from DBLP
[28], a dataset recording most of the publications in com-
puter science. A filtering process, described in detail in the
full version of this paper, creates a list of edges connecting
students to mentors. For each edge we determined the gen-
der of the student and the mentor and the year in which the
connection was established. The resulting network spans
over 30 years and has 434232 authors and 389296 edges. As
may be expected based on previously reported studies, our
mentor-student network exhibits a minority-majority parti-
tion (namely, a low proportion of 21% females), homophily,
power law distribution and a glass ceiling effect.

Figure 4(a) reveals that over time, the fraction of females
in the network (n(R)/n, the shaded red area) has increased,
but it is still below 21%. Also the average degree for females
vertices is lower (1.48 vs 1.87). Figure 4(b) presents an in-
dication for homophily in the mentoring selection process.
This is done by the homophily test of [11], which compares
the expected number of “mixed” (female-male) edges to the
observed one (see also Section 3.2).

Figure 5 presents indications for the glass ceiling effect.
Figure 5(a) shows that the fraction of females among the
vertices of degree k or higher, namely, topk(R)/topk(B), de-
creases continuously as k increases. The first major decrease
occurs when moving from the group of “students” (i.e., de-
gree 1 vertices) to the group of researchers of degree 2 or
higher: the fraction of females drops from top1(R) ≈ 21%
to top2(R) < 15%. It is important to note that the data
indicates that even at the high end of the graph, a few fe-
male researchers with very high degrees are still present;
however, our definitions for the glass ceiling ignore this ex-
tremal effect, which is caused by a few individuals, and con-
centrate on the averages over large samples. Indeed, when
the sample size is large enough, the fraction of the female
researchers decreases. Figure 5(b) shows a strong indica-
tion that the degree distribution of the vertices (females,
males and combined) follows a power law. This in turn is
associated with a preferential attachment mechanism that
is known to result in a power law degree distribution. Note
that the power-law exponent β for the graph of the female
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Figure 4: Female power and homophily in the com-
puter science mentor graph. (a) The rate (i.e., per-
centage in the population) of females over time,
compared with their normalized power, defined as
d(R)/(2m). Males have more power than expected by
their rate, while females have less power than ex-
pected by their rate. (b) Evidence for homophily:
a comparison of the observed number of “mixed”
edges to the expected value assuming there is no
homophily. We consider two cases: (i) the ex-
pected number of mixed edges ignoring the differ-
ence between the male and female average degree
(expected: 127963.09 std: 293.08) and (ii) the ex-
pected number of mixed edges while considering the
different degree sequences for males and females (ex-
pected: 110777.11 std: 281.52). In both cases the
observed value (101607 edges) significantly deviates
from the expectation (the error bars indicate the
expected value ± 10 times the standard deviation)
with extremely low p-values.

researchers is β = 2.91 (in the best fit), which is higher
than the corresponding exponent in the graph for the male
researchers, β = 2.58. Our analysis (presented in 4.2 and
4.3) establishes that if the degree distribution of both sub-
populations follow a power law and the exponent for the
minority sub-population is higher than that of the majority
sub-population, then a strong moment glass ceiling effect
will appear.

6. DISCUSSION
One obvious limitation of our model is that it is some-

what simplistic and captures only one possible mechanism
for generating a glass ceiling effect. It ignores many impor-
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Figure 5: Glass ceiling effect in mentor graph: (a)
percentage of females in the mentor population of
degree at least k. Female start with 21% in the
population and drop to below 15% when considering
degree at least 2 (faculty members). It continues
to decrease (ignoring small samples at the end, see
text). Vertex size and darker color represent larger
sample space. (b) The power-law-like degree distri-
bution for both females and males. The exponent β
for females is higher than for males, demonstrating
the glass ceiling effect.

tant aspects of real life (such as sexual tension, fear, family
responsibilities and jealousy, to name a few) and alterna-
tive (co-existing) mechanisms that contribute to the effect.
For instance, our model cannot be used to explain the oc-
currence of a glass ceiling effect in contexts where pairwise
individual interactions play a less dominant role than in
academia. To account for the glass ceiling effect in such
contexts as well as others, one may consider alternative ex-
planations. In particular, a common possible explanation is
the “leaky pipeline” phenomenon, namely, the phenomenon
that women tend to quit or slow down their careers in order
to invest more time in their families. This phenomenon can
be modeled mathematically in several different ways. One
such way is by introducing vertex departures in addition to
vertex arrivals, with a bias in the form of increased depar-
ture rate of the minority group. But in fact, such a dynamic
“leaky pipeline” model allows several reasonable sub-models
that will not generate a glass ceiling effect, as well as some
other sub-models that do. Moreover, the cause and effect re-
lationships between glass ceiling and leaky pipeline are not
necessarily one-directional; while the glass ceiling effect may
indeed be the outcome of the “leaky pipeline” phenomenon

in certain settings, there are other settings where it may be
its (partial) cause. An interesting direction for future work
would be to describe a more complete model, most likely
combining a number of different mechanisms contributing
jointly to the glass ceiling effect. In any case, we find it
remarkable that the simple mathematical mechanism pre-
sented here (based on homophily) is sufficient to explain (at
least parts of) the glass ceiling effect, despite the fact that
it does not utilize the “leaky pipeline”.

Our Findings may suggest ways to deal with the glass ceil-
ing phenomenon. By better understanding the roots of the
glass ceiling effect, one can address each of the elements and
attempt to mitigate them or deal with those elements that
are easier to manage. Our research indicates that for cer-
tain mechanisms involved in the formation of a glass ceiling,
removing one element may eliminate the glass ceiling effect.
Hence, while it might be difficult to modify the human ten-
dencies of homophily and preferential attachment one could
attempt to balance the proportions of minorities within the
population or impose a proportional representation of suc-
cessful women at the top level. Both of these options may
be classified as variants of affirmative action, but the latter,
even if more common, seems to avoid the roots of the prob-
lem. In particular, a more equally represented society could
be created by encouraging minorities to enter the system,
as our findings indicate that increasing the ratio of minori-
ties at the entry stage may mitigate the glass ceiling effect
at least partially. This conclusion is in line with a common
view [36, 43], which states that fixing the “leaky pipeline”
is key for a more equal gender distribution in science. By
determining and examining the causes of the glass ceiling
effect, we can work on alleviating the glass ceiling effect,
resulting in a richer and more diverse community.
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